
 

 

  

CLAMP 
 

    A Guide to the Extraction of 

Clinical Concepts                                                                                  

Reference 

Manual 



Clamp Documentation Page 1 

 

Table of Contents 

1. Introduction ...................................................................................................... 3 

2. System Requirements ...................................................................................... 4 

3. Installation ........................................................................................................ 6 

4. How to run CLAMP ........................................................................................... 6 

5. Package Description ........................................................................................ 7 

6. Import existing projects into the new version ................................................ 9 

6.1 Annotated documents used in CLAMP ............................................................................ 9 

7. Contact us ........................................................................................................ 9 

8. NLP Components ........................................................................................... 10 

8.1 NLP Components ............................................................................................................. 10 

8.2 Sentence Detector ............................................................................................................ 11 

8.3 Tokenizer ........................................................................................................................ 15 

8.4 Pos Tagger ........................................................................................................................ 18 

8.5 Chunker ............................................................................................................................. 19 

8.6 Named Entity Recognizer ................................................................................................ 20 

8.7 Assertion Identifier ........................................................................................................... 25 

8.8 Ruta_ Rule_Engine ......................................................................................................... 27 

8.9 Section Identifier ........................................................................................................... 28 

8.10 UMLS Encoder ................................................................................................................ 30 

8.11 User_Defined_Components ........................................................................................... 31 

9. Machine Learning components ..................................................................... 33 

9.1 NER Feature Extractor ...................................................................................................... 33 

9.1.1 DF_Brown_clustering_feature ................................................................................. 34 

9.1.2 DF_Dictionary_lookup_feature ................................................................................ 35 

9.1.3 DF_Ngram_feature ................................................................................................... 37 

9.1.4 DF_prefix_suffix_feature .......................................................................................... 37 

9.1.5 DF_Random_indexing_feature ................................................................................ 37 



Clamp Documentation Page 2 

 

9.1.6 DF_Section_feature .................................................................................................. 38 

9.1.7 DF_Sentence_pattern_feature ................................................................................. 38 

9.1.8 DF_Word_embedding_feature ................................................................................. 38 

9.1.9 DF_Word_shape_feature .......................................................................................... 39 

9.1.10 DF_Words_regular_expression_feature ................................................................ 39 

10. Build a Pipeline ........................................................................................... 41 

10.1 Create and Run a Pipeline .............................................................................................. 41 

10.2 Configure the pipeline .................................................................................................... 43 

10.3 Component dependency & Auto fix .............................................................................. 44 

10.4 Import input files ............................................................................................................ 46 

11. Run the pipeline .......................................................................................... 50 

12. Output visualization .................................................................................... 51 

13. Built-in pipelines ......................................................................................... 53 

14. Export pipeline as a jar file ......................................................................... 57 

15. Annotation .................................................................................................. 58 

15.1 Annotate corpus ............................................................................................................. 58 

15.1.1 Create a project ...................................................................................................... 58 

15.1.2 Import annotation files .......................................................................................... 60 

15.1.3 Define entity & relation types ................................................................................ 63 

15.1.4 Start Annotation ..................................................................................................... 67 

15.1.5 Visualization of entity & relation ........................................................................... 68 

15.1.6 Pre-Annotation of entity and relation ................................................................... 69 

16. Machine learning model development ...................................................... 71 

16.1 Building machine learning models (NER model) ........................................................ 71 

16.2 Check output models & logs ......................................................................................... 74 

16.3 Use your own model in pipeline .................................................................................... 75 

16.4 Visualization for error analysis ...................................................................................... 77 

 

  



Clamp Documentation Page 3 

 

Clinical Language Annotation 

Modeling and Processing Toolkit System 

 

1. Introduction 

The CLAMP System is a comprehensive clinical Natural Language Processing software that 

enables recognition and automatic encoding of clinical information in narrative patient 

reports. In addition to running a clinical concept extraction pipeline as well as an annotation 

pipeline, the individual components of the system can also be used as independent modules. 

The system lends itself for diverse applications in a broad range of clinical domains. The 

high performance language processing framework in CLAMP consists of the following key 

building blocks:  

NLP Pipelines 

CLAMP components builds on a set of high performance NLP components that were proven 

in several clinical NLP challenges such as i2b2 , ShARe/CLEF , and SemEVAL. A pipeline can 

be created and customized by a simple drag and drop on the individual  CLAMP components 

in the order that is desired. Upon creation of the pipeline, CLAMP checks for errors in 

sequence and directs the user to the appropriate logical order with insertion of the required 

components for a working pipeline. The CLAMP components are supported by knowledge 

resources consisting of medical abbreviations, dictionaries, section headers, and a corpus 

of 400 annotated clinical notes derived from MTsamples, a freely available resource of 

clinical narrative text. CLAMP also provides built-in pipelines ready for use out of the box for 

a series of common clinical applications.  

  

Version 1.1.7 



Clamp Documentation Page 4 

 

Machine learning and hybrid approaches 

The CLAMP framework provides alternative components for some tasks, utilizing rule based 

methods and/or machine learning methods such as support vector machines, and 

conditional random fields. These components can be customized by re-training on an 

annotated corpus, or editing the rule sets within the CLAMP GUI to achieve a custom NLP 

task. The CLAMP GUI version also provides built-in functionality to test the model, using the 

annotated corpora or n-fold cross validation. 

Corpus management and annotation tool: 

The user interface also provides required tools to maintain and annotate text corpora. It 

hosts an improved version of the brat annotation tool (reference?) for textual annotations. 

 

2. System Requirements 

CLAMP is a stand-alone Java application based on the Eclipse platform technologies. 

CLAMP uses the Apache UIMA (Unstructured Information Management Architecture) 

framework. The annotation module of CLAMP incorporates and enhances the brat rapid 

annotation tool . For the other individual constituents, Apache OpenNLP toolkit, Liblinear and 

CRF Suite are utilized in addition to in-house rule-based components. CLAMP also use the 

UIMA Ruta (Rule based Text Annotation) as a rule engine to help users specify rules. 

CLAMP is distributed as a ready-to-use binary package that can either be executed at the 

command line or carries the associated Graphic User Interface (GUI). Our distribution 

package includes components for jar files, CRFSuite, and a Lucene index of all levels of UMLS 

data.  

The only prerequisite necessary to compile CLAMP is JRE 1.8 (Java Runtime Environment). 

Please ensure that you have Java 8 or higher installed in your system. Run the following 

command in both Mac and Windows to check your version:   

java –version 

  



Clamp Documentation Page 5 

 

Here is an example of what you will see when running the command in Windows: 

 

If your java version is not 1.8, it is available for download from the Oracle website at 

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-

2133151.html. An UMLS account is required in order to use Level 2 and higher data in the 

UMLS encoding component of the system. The account can be created at 

https://uts.nlm.nih.gov/home.html. You will have to enter your UMLS username and 

password when prompted by CLAMP in order to utilise the UMLS encoding component.  

CLAMP also uses the computer’s default browsers to visualize the clinical documents. Since 

all browsers do not completely support all the aspects of the technologies used to implement 

the visualization, limitations exist in term of running the CLAMP annotation module in the 

browsers. On the Windows OS, the Internet Explorer should be higher than IE9; On Macintosh 

computers, Safari (all versions) works well with CLAMP. 

  

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://uts.nlm.nih.gov/home.html


Clamp Documentation Page 6 

 

3. Installation 

Extract the contents of archive (Clamp_1.1.7_win.zip  or Clamp_1.1.7_mac.zip)  to your 

directory of choice. CLAMP application resides in the root folder of your archive. After 

extraction, double click on StartClamp(.exe) file to start CLAMP.  For the CLAMP command 

line version please refer to the readme file. For further information and troubleshooting, 

please refer CLAMP website at http://clamp.uth.edu. 

 

4. How to run CLAMP 

You can run the GUI version of CLAMP by double clicking on the startCLAMP icon. Once the 

software is completely loaded, you will notice a welcome tab. Close the tab to go to CLAMP 

working environment. 

 

  

Close the tab to go to CLAMP 
working environment 

http://clamp.uth.edu/


Clamp Documentation Page 7 

 

5. Package Description 

Since CLAMP is a stand-alone eclipse plugin, its folder structure is similar to other eclipse 

plugins. 

Configuration Folder: 

This folder contains CLAMP configuration files. 

StartCLAMP: 

This is the launching point for the CLAMP GUI. In Windows, this is an executable file while in 

Mac, this is an application. 

 

Workspace Folder: 

This folder contains seven sub-folders: 

1. ComponentLibrary: contains the components used in machine learning feature 

extraction and NLP functions. 

2. MyCorpus: contains the customized corpus built by the users. 

3. MyPipeline: contains the customized pipeline created by users for clinical notes 

processing. 

4. PipelineLibrary: contains the built-in pipelines ready to use for a series of common 

clinical applications. 

5. Log: Includes CLAMP run-time log files 

6. Metadata: The metadata used by CLAMP are included in this folder. 

7. Resources: This folder includes third-party libraries. Currently it has two items: 

7.1 CRFSuite: the CRF implementation for Name Entity Recognition tasks 



Clamp Documentation Page 8 

 

7.2 Umls_index: the Lucene index built for CLAMP based on the UMLS thesaurus. If 

you want to use UMLS terminologies, then you will need to create an UMLS 

account. Please follow the following link to create an UMLS account if you do not 

have any.  

7.3 https://uts.nlm.nih.gov//license.html 

The following table lists libraries included in CLAMP.  

groupId artifactId version 

org.cleartk cleartk-ml-liblinear 2.0.0 

org.ini4j ini4j 0.5.2 

org.apache.uima uimafit-core 2.1.0 

com.google.code.gson gson 2.3 

org.apache.uima uimaj-core 2.6.0 

org.apache.uima uimaj-cpe 2.6.0 

org.apache.uima uimaj-document-annotation 2.6.0 

de.bwaldvogel liblinear 1.94 

org.apache.lucene lucene-core 5.2.1 

org.apache.lucene lucene-analyzers-common 5.2.1 

org.apache.lucene lucene-queryparser 5.2.1 

org.apache.opennlp opennlp-tools 1.5.1-incubating 

org.apache.ctakes ctakes-type-system 3.2.0 

org.cleartk cleartk-named-entity 0.6.6 

com.googlecode.clearnlp clearnlp 1.3.1 

commons-codec commons-codec 20041127.091804 

dom4j dom4j 1.6.1 

org.apache.uima ruta-ep-engine 2.3.0 

javax.servlet servlet-api 3.0-alpha-1 

com.sun.jersey jersey-client 1.19 

junit junit 4.12 

commons-cli commons-cli 1.3 

net.jodah concurrentunit 0.4.2 

org.javatuples javatuples 1.2 

 

  

https://uts.nlm.nih.gov/license.html


Clamp Documentation Page 9 

 

6. Import existing projects into the new version 

On Windows, simply copy contents of your previous work folder (i.e. from older 

Clamp_x.xx.xx_win\workspace\MyPipeline\ contents to new 

Clamp_x.xx.xx_win\workspace\MyPipeline\ contents) using Windows Explorer and 

restart CLAMP if it’s already running. On startup, CLAMP will recognize these projects and 

import them into your workspace. 

 

On MacOSX, similarly copy contents of your previous work folder (i.e. from older 

Clamp_x.xx.xx_win/workspace/MyPipeline/ contents to new 

Clamp_x.xx.xx_win/workspace/MyPipeline/ contents) using Finder and restart CLAMP 

if it’s already running. On startup, CLAMP will recognize these projects and import them into 

your new workspace. 

6.1 Annotated documents used in CLAMP 

The pre-annotated notes are crawled from 'http://www.mtsamples.com/' that has lots of 

publicly available de-identified notes. But only 'discharge summary' and 'general 

medicine' are included in CLAMP. 

We annotated all the 'problem', 'treatment' and 'test' mentions in the notes, based on the I2B2 

2010 NER guideline. 

https://www.i2b2.org/NLP/Relations/assets/Concept%20Annotation%20Guideline.pdf 

7. Contact us 

The CLAMP System was developed by Dr. Hua  Xu’s team from the School of Biomedical 

Informatics at the University of Texas Health Science Center in Houston.  

For technical issues, please contact:  Jingqi.Wang@uth.tmc.edu 

For any other issues, please contact: Anupama.E.Gururaj@uth.tmc.edu  

  

http://www.mtsamples.com/
https://www.i2b2.org/NLP/Relations/assets/Concept%20Annotation%20Guideline.pdf
mailto:Jingqi.Wang@uth.tmc.edu
mailto:Jingqi.Wang@uth.tmc.edu
mailto:Anupama.E.Gururaj@uth.tmc.edu


Clamp Documentation Page 10 

 

8. NLP Components 

8.1 NLP Components   

NLP components are used for processing text. CLAMP offers multiple NLP components that 

are the building blocks for performing any of the NLP tasks. The individual components are 

provided as pre-built modules that are to be used in building pipelines for automatic text 

processing, as well as training customized machine learning models. Figure 8.1 displays the 

CLAMP NLP components, as well as its associated tools, algorithms and resources. In this 

section, we will provide details about each NLP component including their function as well 

as ways to customize them using your own dictionary/model. In “Build a Pipeline” section, 

we have tutorials that touch on use cases wherein the components are utilized in various 

applications. 

 

Figure 8.1 Schema of NLP Components 

  



Clamp Documentation Page 11 

 

8.2 Sentence Detector 

A sentence is defined as the longest whitespace trimmed character sequence between two 

punctuation marks. A Sentence Detector utilizes different methods to detect a sentence. As 

shown in Figure 8.2, CLAMP provides three different models to detect a sentence:  

1. DF_CLAMP_Sentence_Detector  

2. DF_CLAMP_Sentence_by_newline, and  

3. DF_CLAMP_OpenNLP_sentence_detector 

Each model is described in detail in the following sections. 

 

Figure 8.2 Three sentence detectors and their configuration files 

  



Clamp Documentation Page 12 

 

1. DF_CLAMP_Sentence_Detector: 

DF_CLAMP_Sentence_Detector is the default sentence detector in CLAMP. It is designed 

specifically for clinical notes and takes into account the distinctive characteristics observed 

in sentences found in clinical texts. 

 

To configure the DF_CLAMP_Sentence_Detector, please click on the config file. A pop-up 

window opens where you can modify two parameters: Medical Abbreviation, and Max 

Sentence Length. 

Medical Abbreviation: 

There are some medical abbreviations that have punctuation marks  at their beginning 

(“.NO2) while some of them have it at the end (spec.). Providing a list of such abbreviations 

would help the detector to identify sentences more accurately. By default, CLAMP has 

provided a comprehensive list of medical abbreviation which can be found in this file: 

defaultAbbrs.txt  

A) To replace the abbreviation file: 

1. Double click on config.conf file to open it  

2. Click on the button with three dots to browse for your own file 

3. Click on the open  button  

 

A) 2- Click the button with three 
dots to browse for your own file 
 

A) 3- Click on the Open button  



Clamp Documentation Page 13 

 

B) To edit the current file: 

1. Double click on the defaultAbbrs.txt file to open it 

2. Add the terms that you want to include in the abbreviation file 

3. Click on the Save button on the toolbar 

 

Max Sentence Length 

Checking the checkbox for “Break long sentences or not?” allows users to break long 

sentences into the number of words that they have specified in the input textbox. Please 

refer to Figure 8.3 for more information. 

 

Figure 8.3 Interface for config.conf of the DF_CLAMP_Sentence_Detector 

  

B) 1- Double click on defaultAbbrs.txt file  

B) 3- Click the Save button 

B) 2- Add the terms that you 
want to include in the file 



Clamp Documentation Page 14 

 

2. DF_CLAMP_Sentence_by_newline  

This detector will identify new sentences using the line breaks in the file, i.e., each line in the 

file is treated as a single sentence. 

3. DF_CLAMP_OpenNLP_sentence_detector.  

This is an OpenNLP sentence detector which advanced users can use its config.conf  file to 

change its default model. 

A) To replace the default model: 

1. Double click on config.conf file to open it  

2. Click on the button with three dots to browse for your own file 

3. Click on the open  button  

 

  

A) 2- Click on the button with 
three dots to browse for your file 

A) 3- Click on the Open button  



Clamp Documentation Page 15 

 

8.3 Tokenizer 

A Tokenizer segments the text into a sequence of tokens. As shown in Figure 8.4, CLAMP 

provides three different models of tokenizer:  

1. DF_CLAMP_Tokenizer 

2. DF_ OpenNLP_Tokenizer 

3. DF_Tokenize_by_spaces 

Each model will be described in more details. 

 

Figure 8.4 Three tokenizers and their configuration files 

  



Clamp Documentation Page 16 

 

1) DF_CLAMP_Tokenizer 

DF_CLAMP_Tokenizer is the default tokenizer designed specifically for clinical notes. 

Advanced users can use the config.conf file to change the default tokenization. 

A) To replace the default file: 

1. Double click on config.conf file to open it  

2. Click on the button with three dots to browse for your own file 

3. Click on the open  button  

 

  

A) 2- Click on the button with 
three dots to browse for your file 

A) 3- Click on the open button 



Clamp Documentation Page 17 

 

2) DF_ OpenNLP_Tokenizer 

This is an OpenNLP tokenizer. Advanced users can use its config.conf  file to change its 

default model, en-token.bin. 

A) To replace the default file: 

1. Double click on config.conf file to open it  

2. Click on the button with three dots to browse for your own file 

3. Click on the open  button 

 

3) DF_Tokenize_by_spaces. 

This tokenizer uses the spaces in a sentence to separate the tokens. 

  

A) 2- Click on the button with 
three dots to browse for your file 

A) 3- Click on the open button 



Clamp Documentation Page 18 

 

8.4 Pos Tagger 

A Pos tagger allows users to assign parts of speech to each token. As shown in Figure 8.5, 

CLAMP currently provides only one pos tagger, DF_OpenNLP_pos_tagger, designed 

specifically for clinical text.  This tagger is built from re-training the OpenNLP pos tagger on 

a dataset of clinical notes, namely, the MiPACQ corpus. 

(http://clear.colorado.edu/compsem/index.php?page=endendsystems&sub=mipacq). 

Advanced users can use the config.conf file to change the default pos tagger model- 

mipacq_pos.bin. 

 

Figure 8.5  DF_OpenNLP_pos_tagger and its configuration files 

  

http://clear.colorado.edu/compsem/index.php?page=endendsystems&sub=mipacq


Clamp Documentation Page 19 

 

8.5 Chunker 

A chunker does a shallow parsing of a sentence and identifies the syntactic constituents 

such as noun phrases, verb phrases, and etc. As shown in Figure 8.6, CLAMP currently 

provides only one single chunker, DF_OpenNLP_chunker, which is a wrapper of the chunker 

in OpenNLP. Advanced users can use the config.conf file to change the default chunker 

model- en-chunker.bin. 

 

Figure 8.6  DF_OpenNLP_chunker and its configuration files 

  



Clamp Documentation Page 20 

 

8.6 Named Entity Recognizer 

A named entity recognizer identifies named entities and their semantic types in text. 

Typically, named entities refer to clinical concepts in CLAMP. As shown in Figure 8.7, CLAMP 

provides two different models for named entity recognition: 

1. DF_CRF_based_named_entity_recognizer ,and 

2. DF_Dictionary_lookup 

3. DF_Regular_expression_NER 

Each model will be described in more details. 

 
 

Figure 8.7  Three named entity recognizers  and their configuration files 

  



Clamp Documentation Page 21 

 

1. DF_CRF_based_named_entity_recognizer 

DF_CRF_based_named_entity_recognizer is the default named entity recognizer used in 

CLAMP. The recognizer identifies three types of clinical concepts: 

Problems, treatments, and tests. 

It is built from training the CRF model on a dataset of clinical notes, namely, the i2b2 2010 

challenge corpus (https://www.i2b2.org/NLP/Relations/). Advanced users can use the 

config.conf file to change the default recognizer model as in the file defaultModel.jar. 

A) To replace the default file: 

1. Double click on the config.conf file to open it  

2. Click on the button with three dots to browse for your own file 

3. Click on the open  button 

 

  

A) 2- Click on the button with 
three dots to browse for your file 

A) 3- Click on the open button 

https://www.i2b2.org/NLP/Relations/


Clamp Documentation Page 22 

 

2. DF_Dictionary_lookup 

DF_Dictionary_lookup uses terms in the dictionary to match them directly with the  identified 

named entities.  Currently the defaultDic.txt used in CLAMP consists of terms and their 

semantic types from UMLS (https://www.nlm.nih.gov/research/umls/). The semantic type 

of the matched term in UMLS is assigned to the recognized named entity.  

To configure DF_Dictionary_lookup: 

First, click on the config file under the DF_Dictionary_matcher folder. This will open up a new 

window that takes the following three parameters: Case sensitive, Stemming and 

Dictionaries.( Figure 6.8) 

Case sensitive 

If you check the checkbox for “Case sensitive”, the matcher will differentiate between capital 

and lowercase letters when searching for a term in the dictionary.  For example, “Breast 

Cancer” will not matched with “breast cancer”. 

Stemming 

If you check the checkbox   for “Stemming”, the matcher will match the stemmed form of a 

candidate named entity with the terms in the dictionary. For example, “breast cancers” will 

be matched to “breast cancer”. 

Dictionaries 

You can also replace or edit the dictionary file suggested for this function.  

  

https://www.nlm.nih.gov/research/umls/


Clamp Documentation Page 23 

 

A) To replace the default dictionary file: 

1. Double click on config.conf file to open it  

2. Click on the button with three dots to browse for your own file 

3. Click on the open  button 

 

  

A) 2- Click on the button with 
three dots to browse for your file 

a)3- Click on the open button 



Clamp Documentation Page 24 

 

B) To edit the current dictionary file: 

1. Double click on the defaultDict.txt file to open it 

2. Add the terms that you want to include in the dictionary file 

3. Click the Save button at the top of the page 

 

 

 

3. DF_Regular_expression_NER 

Using the defaultRegExpr.txt file, this module can identify named entities. defaultRegExpr.txt 

file can contain several regular expression. If a phrase matches a regular expression, it is 

recognized as a named entity. You can add your own regular expression to the existing file 

by double clicking the file and add the items that you want to include. 

  

B) 2- Add the terms that you want to 
include in the dictionary file file 

B) 3- Click the save button 

B) 1- Doubel click on the 
defaultDict.txt file to open 
it 



Clamp Documentation Page 25 

 

8.7 Assertion Identifier 

An Assertion identifier checks whether there is a negation related to a specific clinical 

concepts in the text. A negation means the absence or opposite of something positive. 

CLAMP Assertion Identifier provides a mechanism to examine the real-world implications of 

annotations in a given clinical text. The defaultNegexDict.txt file which contains  common 

negation patterns is used by CLAMP to check for negation in a clinical text. You can either 

replace or edit this file by following the steps below (Figure 8.8). 

 

Figure 8.8 Assertion identifier and its configuration file 

  



Clamp Documentation Page 26 

 

A) To replace the Negation list file: 

1. Double click on config.conf file to open it  

2. Click on the button with three dots to browse for your own file 

3. Click on the open  button 

 

B) To edit the current dictionary file: 

1. Double click on the defaultNegexDict.txt file to open it 

2. Add the terms that you want to include in the dictionary file 

3. Click the Save button at the top of the page 

 

  

A) 2- Click on the button with three 
dots to browse for your own file 
 

A) 3- Click on the Open 
button

B) 1- Double click on the 
defaultNegexDict.txt file 
to open it 

B) 2- Add the terms that 
you want to include in 
the dictionary file 
 

B) 3- Click the Save button 
 



Clamp Documentation Page 27 

 

8.8 Ruta_ Rule_Engine 

UIMA Ruta rules can be used to create or modify annotations as well as create features for 

annotations. Ruta rules in general can consist of a sequence of rule elements. A simple rule 

elements consist of four parts: A matching condition, an optional quantifier, an optional list 

of conditions and an optional list of actions. For more information please visit:  

https://uima.apache.org  

A) To replace the default file: 

1. Double click on config.conf file to open it  

2. Click on the button with three dots to browse for your own file 

3. Click on the open  button 

 

  

A) 2- Click on the button with three 
dots to browse for your own file 
 

A) 3- Click on the Open button 

https://uima.apache.org/d/ruta-current/tools.ruta.book.html#ugr.tools.ruta.language.language


Clamp Documentation Page 28 

 

B) To edit the current dictionary file: 

1. Double click on the default.Ruta file to open it 

2. Add the terms that you want to include in the dictionary file 

3. Click the Save button at the top of the page 

 

8.9 Section Identifier 

The section header identifier component identifies the section headers in  a clinical note 

based on a predefined dictionary and categorizes them into general categories  (Figure 8.9). 

E.g. the section header “ICD 10 code” will be assigned to the “icd_code” category.  

 

Figure 8.9  Section header identifier and its configuration file 

B) 1- Double click on the 
default.Ruta file to open it 
 

B) 2- Add the rules that you want 
to include in the dictionary file 
 

B) 3- Click the Save button 
at the top of the page 



Clamp Documentation Page 29 

 

You can replace or edit the default dictionary, section_map.txt,  following the steps below: 

A) To replace the default file: 

1. Double click on config.conf file to open it  

2. Click on the button with three dots to browse for your own file 

3. Click on the open  button 

 

B) To add additional section headers to the current file: 

1. Double click on the section_map.txt file to open it 

2. Add the terms that you want to include in the file 

3. Click the Save button at the top of the page 

 

  

B) 1- Double click on the 
section_map.txt file to open it 
 

B) 2- Add the terms that you want 
to include in the dictionary file 
 

B) 3- Click the 
Save button at the 
top of the page 

A) 2- Click on the button with three 
dots to browse for your own file 
 

A) 3- Click on the Open button 



Clamp Documentation Page 30 

 

8.10 UMLS Encoder 

A UMLS Encoder matches the terms of clinical concepts to its corresponding CUIs in UMLS. 

For example, the term “breast cancer” will be encoded into the CUI of “C6006142” in UMLS. 

Currently CLAMP provides a default dictionary based on the UMLS encoder as shown in 

Figure 8.10. 

 

Figure 8.10 A dictionary based UMLS encoder 

  



Clamp Documentation Page 31 

 

8.11 User_Defined_Components 

DF_Drug_Attribute_Connector: 

This is a context free grammar parser which is extracted from Medex. It is used to connect 

medication to its possible attributes such as dose. 

DF_Relation_connector_after_ruta:  

While connecting two named entities using Ruta is relatively easy,  it can not be used to 

provide a name for that relationship.  

Advanced users can generate their own file and replace it with the system’s default file or 

edit the default file. 

A) To replace the default file: 

1. Double click on config.conf file to open it  

2. Click on the button with three dots to browse for your own file 

3. Click on the open  button 

 

  

A) 2- Click on the button with three 
dots to browse for your own file 
 

A) 3- Click on the Open button 



Clamp Documentation Page 32 

 

B) To edit the current dictionary file: 

1. Double click on the relationConnection.txt file to open it 

2. Add the terms that you want to include in the file 

3. Click the Save button at the top of the page 

 

  

B) 1- Double click on the 
relationConnection.txt 
file to open it 
 

B) 2- Add the rules that you 
want to include in the file 

B) 3- Click the Save button 
at the top of the page 



Clamp Documentation Page 33 

 

9. Machine Learning components 

9.1 NER Feature Extractor  

This component consists of different feature extractors (Figure 9.1), which are used for 

extracting different types of features for named entity recognition, CLAMP users will use this 

component to build their own named entity recognizer in a corpus annotation project (Refer 

to Section 4.2) . Similar to the previous components, we can customize these features by 

changing or replacing their default config files. Explanation of each extractor is as follows: 

 

Figure 9.1 List of NER feature extractors 

  



Clamp Documentation Page 34 

 

9.1.1 DF_Brown_clustering_feature  

It is a  type of word representation feature generated on the unlabeled data which is provided 

by the SemEval 2014 Challenge. Advanced users can eplace their own Brwon clustering file 

with the system’s default file. 

A) To replace the default file: 

1. Double click on config.conf file to open it  

2. Click on the button with three dots to browse for your own file 

3. Click on the open  button 

 

For more information on how to create your own Brown Clustring file visit: 

https://github.com/percyliang/brown-cluster 

  

A) 2- Click on the button with three 
dots to browse for your own file 
 

A) 3- Click on the Open button 

https://github.com/percyliang/brown-cluster


Clamp Documentation Page 35 

 

9.1.2 DF_Dictionary_lookup_feature 

This extractor uses a dictionary consisting of terms and their semantic types from UMLS to 

extract potential features.  

Advanced users can replace or edit the default file following the steps below:  

Note: The format of the content should be as the same as the default file: (phrase then tab 

then semantic type) 

A) To replace the default file: 

1. Double click on config.conf file to open it  

2. Click on the button with three dots to browse for your own file  

3. Click on the open  button 

 

  

A) 2- Click on the button with 
three dots to browse for your own 
file 

A) 3- Click on the Open button 



Clamp Documentation Page 36 

 

B) To edit the default file: 

1. Double click on the word_path.txt file to open it 

2. Add the terms that you want to include in the file  

3. Click the Save button at the top of the page 

 

 

 

  

B) 3- Click the save button 

B) 2- Add the terms that you want 
to include in the dictionary file file 

B) 1- Doubel click on the 
defaultDict.txt file to open 
it 



Clamp Documentation Page 37 

 

9.1.3 DF_Ngram_feature 

This module uses the words along with their part-of-speech (pos) tagging as NER features.  

9.1.4 DF_prefix_suffix_feature 

This function extracts the prefix and suffix of words that may be a representative of  a 

specific type of named entities. 

9.1.5 DF_Random_indexing_feature  

Similar to the brown clustering, it is a type of word representation feature generated on 

unlabeled data using a 3rd party package. For more information visit:  

https://jcheminf.springeropen.com 

A) To replace the default file: 

1. Double click on config.conf file to open it  

2. Click on the button with three dots to browse for your own file  

3. Click on the open  button 

 

  

A) 2- Click on the button with three 
dots to browse for your own file 
 

A) 3- Click on the Open button 

https://jcheminf.springeropen.com/


Clamp Documentation Page 38 

 

9.1.6 DF_Section_feature 

This function extracts the section in which a candidate named entity presents. 

9.1.7 DF_Sentence_pattern_feature  

This function distinguishes the pattern of a sentence by CLAMP built in rules. 

9.1.8 DF_Word_embedding_feature  

Similar to the brown clustering and random indexing, it is a type of distributed word 

representation feature generated on the unlabeled data (MIMIC II) provided by the SemEval 

2014 Challenge using a neural network.Advanced users can replace the default file with their 

own file.  

A) To replace the default file: 

1. Double click on config.conf file to open it  

2. Click on the button with three dots to browse for your own file  

3. Click on the open  button 

 

  

A) 2- Click on the button with three 
dots to browse for your own file 
 

A) 3- Click on the Open button 



Clamp Documentation Page 39 

 

9.1.9 DF_Word_shape_feature 

This function extracts the type of a word; it identifies whether or not it begins with an english 

letter, number, and etc. 

9.1.10 DF_Words_regular_expression_feature 

This function extracts the regular expression patterns of words that may indicate a specific 

type of named entity. Advanced users can create their own regular expressions or edit the 

default file. 

A) To replace the default file: 

1. Double click on config.conf file to open it  

2. Click on the button with three dots to browse for your own file  

3. Click on the open  button 

 

  

A) 2- Click on the button with three 
dots to browse for your own file 
 

A) 3- Click on the Open button 



Clamp Documentation Page 40 

 

B) To edit the default file: 

1. Double click on the reglist.txt file to open it 

2. Add the terms that you want to include in the file  

3. Click the Save button at the top of the page 

 

 

  

B) 3- Click the save button 

B) 2- Add the terms that you 
want to include in the file file 

B) 1-Doubel click on the 
reglist.txt file to open it 



Clamp Documentation Page 41 

 

10. Build a Pipeline 

10.1 Create and Run a Pipeline 

Running a pipeline refers to the use of a set of NLP components to identify the specified 

information , including sentence segmentation, tokenization, part of speech tagging, 

abbreviations, etc. The NLP components are executed in a sequence based on the functional 

dependency amongst them.  

In order to recognize clinical concepts within  clinical text: 

1. You need to create a project 

2. You need to configure the pipeline 

3. You need to import the files that you want to be analyzed 

4. You need to process the imported files by running them through the pipeline.  

Follow the steps below to build a pipeline:  

A) Create a new project 

1. Click on the plus (+) sign at the top left corner of the screen as shown in Figure 10.1. 

 

Figure 10.1 Create a new project 

2. On the pop-up window (Figure 10.2), enter a name for your project, for example: 

“Clinical_concept_recognition”. 

3. Select NLP Pipeline as the project type.  

4. Click the Finish button.  

  



Clamp Documentation Page 42 

 

A new project with the specified name is created and is placed under Mypipeline folder on 

the Pipeline panel at the lower left of the screen (Figure 10.3) 

 

Figure 10.2 Creating a new  NLP pipeline project  

 

Figure 10.3 A project with the specified name is created and is placed under Mypipeline folder 

Double click the pipeline name to view its content. As you can see,  it contains two folders 

“Components”, and “Data”. The Components folder contains the pipeline configuration file. 

The Data folder includes two folders:  Input, and Output. The Input  folder holds the files that 

are processed by the pipeline. The results obtained by running  the pipeline are saved in the 

output folder. 

  

A) 2- Enter a name for the project 

A) 4- Click the Finish button  
 

A) 3- Select NLP Pipeline 
as the project type.  
 



Clamp Documentation Page 43 

 

10.2 Configure the pipeline 

To configure a pipeline double click on the .pipeline file from the newly created pipeline 

project to open it in the middle window on the screen. (Figure 10.4). 

Here you can drag and drop the NLP components from the Component panel. Since we want 

to recognize clinical concepts using NLP components, we drag the 

DF_CRF_based_name_entity_recognizer from the NLP_components to the pipeline.  

 

Figure 10.4 Pipeline configuration window 

  



Clamp Documentation Page 44 

 

10.3 Component dependency & Auto fix 

As shown in Figure 10.5, there is a red X sign in front of the newly added component, “CRF 

based named entity recognizer”.  This sign indicates that the named entity recognizer 

component  is dependant on other NLP components that are missing from the current 

pipeline. In our example, the clinical notes first need to be processed by the sentence 

detector, tokenizer, section identifier, and POS tagger components before processing by the 

named entity recognizer.  

To fix this issue, simply click on the Auto fix button at the top of the panel. This automatically 

adds the required components to the pipeline. The sequence of the individual components 

from top to bottom reflect the order in which they will run to process your input data. 

After the required components are added (Figure 10.6), the red X sign changes to the green 

circle sign indicating the accuracy of  the order of the components. Once you see the green 

sign for each of the displayed NLP components, click on the Save button at the top of the 

screen to save your changes. 

 

Figure 10.5 A wrong pipeline for clinical concept recognition needs to be fixed with dependent 

NLP models 



Clamp Documentation Page 45 

 

 

Figure 10.6 - A correct pipeline for clinical concept recognition with all necessary NLP models. 

  



Clamp Documentation Page 46 

 

10.4 Import input files 

Once the pipeline is  configured, you will need to import your desired files to the Input folder 

using the the following steps: 

1. In the PipelineView, right click on the Input folder under the Data folder, then select the 

import (Figure 10.7). A pop-up menu appears which  lets you select the files that you want 

to import.  

2. Click on the small arrow next to the General folder to expand it, then select File System 

as the import source.  

3. Click on the Next button (Figure 10.8) 

 

Figure 10.7 Drop-downContext menu for importing the input files 

  

1- right click on the Input 
folder under the Data folder, 
then select the import 
 



Clamp Documentation Page 47 

 

 

Figure 10.8 Import resources from the local file system into an existing project  

4. Next, as shown in Figure 10.9, click on the Browse button on the top of the window to 

choose the folder of your choice. The selected folder will be displayed on the left side of 

the window, and the files inside the folder will be displayed on the right side.  

5. Click the checkbox for the files that you want to run the pipeline on; currently the CLAMP 

pipeline can only process files with the .txt extension. Also, CLAMP assists you in 

selecting your desired files in three different ways: Filter Types, Select All and Deselect All. 

Filter Types: Allows you to define the type of files that will be imported. For example, you 

may only want to import files with the .txt extension 

Select All: Allows you to choose all displayed files 

Deselect All: Allow you to deselect the files that have already been selected 

  

2- Click on the small arrow next 
to the General folder to expand 
it, then select File System  



Clamp Documentation Page 48 

 

6. Click on the Browse button next to  the “Into folder” field  to choose the folder that you 

want to import your  files to. Here, we keep the default directory 

7. Click on the Finish button.  

 

Figure 10.9 Window of input files selection 

Now, you can double click on the Input folder to see the imported files (Figure 10.10). 

Similarly, you can also double click on each file to view its content (Figure 10.11). 

 

 Figure 10.10 Imported files under the Input folder 

  

4- choose the folder of your choice 

5- Click the checkbox for the files 
that you want to run the pipeline on 

7- Click on the Finish button 

6- choose the folder that you 
want to import your  files to 



Clamp Documentation Page 49 

 

 

Figure 10.11 View the content of input file sample_1054.txt directly in the interface 

  



Clamp Documentation Page 50 

 

11. Run the pipeline 

After you have configured the pipeline and imported the input files, you can start running the 

pipeline. To run a pipeline, simply click on the run icon at the top of the screen as shown in 

Figure 11.1.  

Once the pipeline starts running, you can check the progress of  the input file processing 

from the Console window and the progress bar at the bottom of the screen  (Figure 11.2). 

You can always stop the processing at anytime by clicking on the red stop button next to the 

progress bar.  

 

Figure 11.1 Running the pipeline 

 

 

Figure 11.2  check the progress of  the input file processing from the Console window  

  



Clamp Documentation Page 51 

 

12. Output visualization 

Once running the pipeline is completed,  the generated files are displayed in the Output 

folder. These files can be viewed in two different formats (.xmi , .txt): 

Clicking on a file with the .xmi extension allows you  to view its original content 

annotated  with recognized clinical concepts. Different types of clinical concepts will be 

highlighted with different colors. (Figure 12.1) 

 

Figure 12.1 View of text annotated with recognized clinical concepts 

Clicking on a file with the .txt extension will display a view of tab delimited, detailed output 

information in a new window. As shown in Figure 12.2, each line in the file illustrates the 

detailed information of one recognized clinical concept.  The following information 

is  included in  a tab delimited output: 

1. Start Index:  Starting position of the recognized concept. 

2. End Index: Ending position of the recognized concept. 

3. Semantic Type: Semantic type of the recognized concept. 

4. CUI: The Concept Unique Identifier of the concept in Unified Medical Language System 

(UMLS). If the pipeline does not include the model of UMLS encoder, the value of this 

column will be “null”. 



Clamp Documentation Page 52 

 

5. Assertion: If the pipeline does not include the model of Assertion identifier, the value of 

this column will be “null”. 

6. Concept Mention: Referring to a  concept, i.e., named entity in the text. 

 

 

Figure 12.2 Tab delimited format of output files 

  

1- Start Index 

2- End Index 

3- Semantic Type 

5- Assertion 

4- CUI 

6- Concept Mention 



Clamp Documentation Page 53 

 

13. Built-in pipelines 

In order to facilitate a convenient utility of CLAMP,  a series of pipelines that could be directly 

adopted in common clinical applications are pre_built and displayed in PipelineLibrary 

(Figure 13.1). Users can directly drag one of them (e.g.,  smoking_status, Figure 13.2) from 

the PipelineLibrary and drop it under My Pipeline. The required NLP components of these 

pipelines are already configured, as illustrated in Figure 13.3. CLAMP allows you to 

customize each of these components to fit your needs. Now, you need to import your files; 

for more information go to “Import input files” section. 

 

Figure 13.1 Built-in pipeline library in CLAMP 

  



Clamp Documentation Page 54 

 

 

Figure 13.2 Dragging smoking_status and drop it under MyPipeline 

 

Figure 13.3 Built-in pipeline library in CLAMP 

  



Clamp Documentation Page 55 

 

Depending on what your use case is, the current built-in pipelines are divided into the 

following categories: 

1. General: automatically annotates concepts and their attribute for general use, including: 

CLAMP-ner: annotates the disease, procedure and medication concepts  

CLAMP-ner-attribute: annotates the attributes of disease (e.g., body location of a 

disease), lab procedure (e.g., value of a lab test ) and medication (e.g., dosage of a 

medication) concepts  

Disease-attribute: annotate the attributes of diseases, including body locations (e.g., left 

atrium), severity degrees (e.g., mild, severe) and uncertainty (e.g., probably). 

Lab-attribute: annotates the attributes of lab procedures  

Medication-attribute: annotates the attributes of medications 

2. Disease_symptom: automatically annotates symptoms of diseases, including: 

Bleeding_extraction: annotates bleeding symptoms 

Colorectal_cancer: annotates symptoms of colorectal cancer 

3. Behavior: automatically annotates behaviors of patients , including: 

Smoking_status: annotates whether or not the patient is in a smoking status, and whether 

the patient has a smoking history. 

Figure 13.4 illustrates an example of using the disease-attribute pipeline in our pipeline 

library to annotate attributes and their relations with diseases.  



Clamp Documentation Page 56 

 

 

Figure 13.4  An example of disease attribute annotation using the pipeline library  in CLAMP 

  



Clamp Documentation Page 57 

 

14. Export pipeline as a jar file 

In order to export a pipeline as a jar file and use it in the command line version, please follow 

the steps below (Figure 14.1): 

1. Go to your desired pipeline folder 

2. Click on the small arrow next to it to expand it 

3. Right click on the Components folder and select “Export as jar” 

 

Figure 14.1 Export a pipeline as a jar  

  

1. Go to your desired pipeline folder 
 

2. Click on the small arrow 
to expand the folder 
 

3. Right click on the Components 
folder and select “Export as jar” 
 



Clamp Documentation Page 58 

 

15. Annotation 

15.1 Annotate corpus 

The CLAMP annotation module enables you to annotate customized entities and  specify 

relations between them in your desired corpus . These annotations enable you to assign 

additional clinical information to a selected text and develop an annotated corpus that’s 

more suitable to the specific task that you have. Task-specific models can be developed and 

used in the machine-learning modules of CLAMP or any other system of your choice. 

Before using this function, you need to: 

1. Create a project 

2. Import the files that you want to annotate 

After completing these steps, you will be able to annotate the imported files based on some 

predefined structure. The following steps will guide you on how to perform the steps 

mentioned above. 

15.1.1 Create a project 

A) To create a project: 

1. Click on the plus (+) sign at the top left corner of the screen as shown in Figure15.1. 

 

Figure 15.1 Step 1 to create a new project 

2. On the pop-up window, enter a name for your project, e.g., Drug_name_annotation, (Figure 

15.2). 

3. Select Corpus Annotation as the project type. 

4. Click the Finish button.  

 

A) 1- Click on the plus sign Index 



Clamp Documentation Page 59 

 

 

Figure 15.2 Creating a new Corpus Annotation project 

A new project with the name that you have specified is created and placed in the Corpus 

panel. (Figure 15.3) 

 

Figure 15.3 Creating a new Corpus Annotation project 

Double click the project name to view its content. The created project contains two main 

folders: 

Corpus: Contains the files that will be annotated 

Models: Contains the machine learning models generated from the annotated files.In 

addition, the prediction results generated from the n-fold cross-validation process and gold 

standard annotations are included in this folder. 

A) 2- enter a name for your project Index 

A) 3- Select Corpus Annotation 
as the project type 

A) 4- Click the Finish button 



Clamp Documentation Page 60 

 

15.1.2 Import annotation files 

After you have created a project, follow the steps defined below to import the files that you 

want to annotate:  

(Please note that you can import the files to either train or test folders.) 

A) To import the files that you want to annotate: 

1. Right click on the train folder under the corpus folder in the CorpusView panel 

2. Select the import function from the context menu (Figure 15.4). A pop-up window will 

appear. 

 

Figure 15.4 Context menu for importing the input files 

3. On the pop-up window, select the import source. Here, you need to select “File System” 

which is already selected by default. 

4. Click on the Next button  

 

A) 1- Right click on the train folder under 
the corpus folder in the CorpusView panel 

A) 2- Select the import function 
from the context menu 



Clamp Documentation Page 61 

 

 

5.  Click on the Browse button on the top of the window to choose the folder of your choice. 

The selected folder will be displayed on the left side of the window, and the content of  the 

folder will be displayed on the right side. To import you desired files, check the 

checkboxes next to the files of your choice.  

You also have three options to choose from: Filter Types/ Select All/ Deselect All 

Filter Types: Allows you to define the type of files that will be imported. The only extensions 

that you will work with in CLAMP are txt, and .xmi. For example, you may only want to import 

files with the .txt extension 

Select All: Allows you to choose all displayed files 

Deselect All: Allow you to deselect the files that have already been selected 

6. Click on the Browse button next to  the “Into folder” field  to choose the folder that you 

want to import your  files to. Here, we keep the default directory 

7. Click on the Finish button.  

A) 3- Select the import sourse 

A) 4- Click on the next button 



Clamp Documentation Page 62 

 

 

Now that the selected files have been imported to your desired folder, you can start 

annotating them. Double click on the files to open theim in the middle window and annotate 

them. Upon double clicking each file, you will notice that another file with the same name but 

a different extension (.xmi) has been added to your folder and displayed on the screen. This 

is the file type used by  CLAMP  for display and interaction purposes (Figure 15.5).  

 

Figure 15.5 The content of an annotation file 

  

A) 5- Chosse the 
folder of your choice 

A) 6- choose the 
folder that you want 
to import your files to 

A) 7- Click the Finish button 

Upon double clicking each file, you 
will notice that another file with the 
same name but a different extension 
(.xmi) has been added to your folder 



Clamp Documentation Page 63 

 

15.1.3 Define entity & relation types 

Before starting annotation, you need to define the semantic types that you will use for this 

purpose. Semantic types in CLAMP refer to entities(e.g, ‘problem/treatment/test’) and the 

relations between them.  

A) To define a new entity type: 

1. Double click on the typedef.xmi file under the models folder to open it. Using this file, you 

will be able to define a schema for entities and the relation types among them: 

2. Right click on the Entities node  

3. Go to “Add Child” 

4. Click on New Element 

 

5. In the pop up window, enter a name for the element  

6. Click the OK button 

 

A) 2- Right click on the enteties node 

A) 3- Go to Add Child 

A) 4- Click on new elements 

A) 5- Enter a name for the element 

A) 6- Click the OK button 



Clamp Documentation Page 64 

 

The created element will be added to the Entity node  (Figure 15.6) 

 

Figure 15.6 The created element will be added to the Entity node 

The above steps should be repeated for every element that you want to add to the Entity 

node. 

B) To define a new relation type: 

1. Right click on the Relations node  

2. Go to “”Add Child”  

3. Click on New Element 

 

 

4. In the pop up window, enter a name for the relation 

5. Click the OK button 

B) 1- Right click on the Relations node 

B) 2- Go to Add Child 

B) 3- Click on new elements 



Clamp Documentation Page 65 

 

 

Then, you need to decide which entities are involved in this relation. There are two roles of 

arguments an entity can hold in a relation: From, and To. 

“From” refers to an independent entity while “To” indicates  the dependent entity.  

C) To select the entities that are involved in a relation: 

1. Right click on the newly created relation 

2. Go to “”Add Attribute” 

3. Click on “New Attribute” 

 

B) 4- Enter a name for the element 

B) 5- Click the OK button 

C) 1- Right click on the newly created relation 

C) 2- Go to Add Attribute 
C) 3- Click on new Attribute 



Clamp Documentation Page 66 

 

4. In the pop up window, enter a name for the new attribute (you will use “from” for the 

independent entity, and “to” for the dependent entity) 

5. Enter the actual name of the entities for the Value field 

6. Click the OK button 

7. Click on Save at the top of the window 

 

  

A) 4- Enter a name for the new attribute 

A) 5- Enter the actual name of the entities  

A) 6- Click the OK button 



Clamp Documentation Page 67 

 

15.1.4 Start Annotation 

Now that you have set your desired schema, you are ready to start annotating your corpus. 

First, open your desired .xmi file, then: 

To assign entity: Place your mouse over a word/phrase to highlight it and assign an 

appropriate entity to the selected text. (Figure 15.6)  

 

Figure 15.6 Named entity annotation 

To assign relation: By dragging your mouse from an independent entity and dropping it to a 

dependent entity, the names of possible relations will occur. Choose the appropriate relation 

name by clicking on one of the displayed names. (Figure 15.7) 

 

Figure 15.7 Relation annotation 

Please remember that you can only assign a relation to the entities that have already been 

defined in that relation. 

Once you have completed annotating the corpus, save your changes by clicking on the save 

button at the top of the screen. 

  



Clamp Documentation Page 68 

 

15.1.5 Visualization of entity & relation 

Although different colors are automatically assigned to the different items in the “Display 

Option”, (Figure 15.8),  you are able to change them at any time.  

 

Figure 15.8 Change visualization of the annotated entity/relation 

A) To change the default colors for semantic types: 

1. Double click on the default color for the entity of your choice 

2. Pick a new color from the color picker window 

3. Press the OK button 

 

  

A) 1- Double click the on the 
default color of your choice 

A) 2- Pick a new color 

A) 3- Press the OK button 



Clamp Documentation Page 69 

 

15.1.6 Pre-Annotation of entity and relation 

As annotating a corpus from scratch may be a time-consuming and costly process, CLAMP 

offers an advanced feature called “pre-annotation” function which facilitates this 

process.  The “pre-annotation” function relies on the existing models in CLAMP and is highly 

customizable. 

A) Using pre-annotation function 

1. Choose your desired pipeline to annotate your files in a corpus project. 

For more information on how to run a pipeline, go to “Run the pipeline” section. 

2. Select the .xmi files which contains the predicted named entities from the output folder.  

3. Copy them into the train/test folder of your desired corpus annotation project. To copy,  

right click on the selected files and choose copy.  

 

Double click on the files to view their contents in a new window. As you can see in Figure 

15.9, the identified named entities in the file are already highlighted. Now you can start your 

own annotation. 

A) 1- Choose your 
desired created pipeline 

A) 2- Select the .xmi files which 
contains the predicted named entities 
from the output folder pipeline 

A) 3- Copy them into the 
train/test folder of your desired 
corpus annotation project 



Clamp Documentation Page 70 

 

 

Figure 15.9 A file with pre-annotated named entities 

  



Clamp Documentation Page 71 

 

16. Machine learning model development 

Clamp enables you to build your own machine learning model based on a corpus that you 

have already annotated or a pre annotated one that  you have imported into a corpus 

annotation project. The model can be used for predictions on new files. In the current version 

of Clamp, CRF (Conditional Random Field) is used to build machine-learning model for 

named entity recognition (NER). 

The first step to build a Machine Learning model is to configure its schema.  After configuring 

the schema, you will be able to start running the training model and evaluation processes. 

Once these processes are completed, you can view the generated model, its associated log 

files, and named entities predicted  by the model  in the output folder. The following steps 

will guide you on how to perform the steps mentioned above. 

 

16.1 Building machine learning models (NER model) 

1. Select your desired train folder on the Corpus panel  

2. Click on the “Train Model” button at the top of the window as shown in Figure 16.1 

 

Figure 16.1 

3. On the pop up window as shown in Figure 16.2, enter a name for the model that you are 

building 

4. Click the checkbox for the  features that you want to include in your model 

  



Clamp Documentation Page 72 

 

5. In the Evaluation box, choose if you want to test the built model against a test dataset 

and/or if you want to do a n-fold cross-validation during the training process. 

If you choose to test the model against a test set, make sure that you have your desired 

annotated xmi files in the folder of your choice. You can browse for the folder by clicking on 

the three dot button next to the checkboxes. With the n-fold cross validation, you are not 

required to do so as the training data will be used to test the model performance. 

6. Click on the Finish button to start building the model.  

Once the building process starts, you can check the progress in the Console window, as well 

as the progress bar at the bottom of the screen. You can also stop the building process at 

anytime by clicking the red stop button in the Progress window.  

 

Figure 16.2 Configuration window for machine learning model building 

3. Enter a name 
for the model that 
you are building 

4. Click the checkbox for the  features 
that you want to include in your model 
 

5. Choose if you want to test the built model with 
a test dataset and/or if you want to do a n-fold 
cross-validation during the training process 
 

6. Click on the Finish button 
to start building the model 



Clamp Documentation Page 73 

 

Note: During the model building process, the training files can not be annotated. Clicking on 

the text of the training files pops up an alert window indicating that the user operation is 

waiting for a function to complete, (Figure 16.3). 

 

Figure 16.3  Annotations on the training file will be paused during the model building process 

  



Clamp Documentation Page 74 

 

16.2 Check output models & logs 

By default the built models, their associated logs, and the named entities predicted by each 

model (in the output sub-folder) are stored in the models folder. As shown in Figure 16.4, 

both the model built during n-fold cross validation and the model trained on the whole 

training set are also stored in the directory. The content of the log files includes the output 

information of the training process and the evaluation performance of each specific folder 

for cross validation. (Figure 16.5) 

 

 

Figure 16.4  Annotations on the training file will be paused during the model building process 

 

Figure 16.5  Cross-validation performance in training.fold0.log 

  



Clamp Documentation Page 75 

 

16.3 Use your own model in pipeline 

The steps below show how you should use your own model to recognize named entities: 

1. Make sure that you have selected your desired project folder on the Corpus panel  

2. Go to models> model_xxx> output, then, right click on the file labled model.jar and select 

copy (Figure 16.6) 

3. Go to the pipeline panel and select the pipeline of your choice 

4. Click on the small arrow next to it to expand it 

5. Go to Components -> Named Entity Recognizer -> 

DF_CRF_based_named_entity_recognize 

6. Paste the copied file into “CRF based name entity recognizer” folder by righ clicking on 

the folder and choosing past  

7. Double click on the Config.conf file in the “CRF based named entity recognizer” folder to 

open it 

8. Click on the three dots button to replace the default model for  “CRF based named entity 

recognizer” with your own model (Figure 16.7) 

9. Click on the Open button 

10. Click the save button at the top of the page to save the changes (Figure 16.8)  

 

 

Figure 16.6 How to use your own model to recognize name entities 

2. Go to models> model_xxx> 
output, then, right click on the file 
labled model.jar and select copy 

5.Go to Components > Named Entity Recognizer > 
DF_CRF_based_named_entity_recognizer 
 



Clamp Documentation Page 76 

 

 

Figure 16.7 Replace the default model with your own model 

 

Figure 16.8  Click the Save button at the top of the page  

  

8. Click on the three dots button to replace 
the default model for  “CRF based named 
entity recognizer” with your own model 

9. Click on the Open button 



Clamp Documentation Page 77 

 

16.4 Visualization for error analysis 

You will be able to evaluate the performance of the NER model only if you have already 

checked the checkbox(es) for “Use test set” or/and “CV, fold” when creating the model. For 

more information on creating a new NER model, go to Building machine learning models 

section. Once the model is built, you can conduct an error analysis to compare the gold-

standard annotations with the predicted ones (the annotations that are built based on  the 

model that you have specified).  

To perform error analysis: 

Double click on one of the .xmi files listed in the output folder of your choice on the corpus 

panel. This will open a new window where you can see the original text along with both gold-

standard and predicted annotations (Figure 16.9). 

 

Figure 16.9 - The .xmi file content which includes the original text along with both gold-standard 

and predicted annotations 

Please note that all named entities in both gold-standard and predicted annotations are 

listed on the "Display Options" panel. You can choose which named entities to be 

highlighted in the text file and assign different colors to them as described in “Visualization 

of entity and relation types” section. 


