Reference

Manual

Table of Contents

T, INTFOAUCTION ... ettt ee e 3
2. System ReqUIrEMENTSuiiiiiieie et 4
3. INSLAllAtIONoooiiiieeee e e 6
4. HOW 10 TUN CLAMP ...t 6
5. Package DeSCIIPLIONcoooviiiiiiie e e 7
6. Import existing projects into the new versionccocoiieiiiiciii e, 9
6.1 Annotated documents used iN CLAMP ... 9

7. CONTACT US ...t e e e e e 9
8. NLP CompPOoNeNntS.......coooiiiiiieeeeeeeee e 10
8.1 NLP COMPONENTSottt e et e e e e tra e e e eearaeeeeeaasaeeeenes 10
8.2 SeNTENCE DETECTON ...ttt 11
8.3 TOKENIZET ...ttt sttt b et 15
S o 1l - To [= SR PUUUOURPPRINt 18
8.5 CRUNKET ...ttt ettt e e me et e bt eseen e et e eaeebeeneeneeneenee 19
8.6 Named Entity RECOGNIZETcuooieiieeeeeeeeee e 20
8.7 ASSErtion IdeNTifierc.ooieiiiieee e 25
8.8 RULA_L RUIELENGINE ...ttt 27
8.9 SeCtiON IAENTITIET . .oeiieeeeee et 28
8.TO UMLS ENCOUET ...ttt ettt ettt ae et et e eae e ene e e e e ee 30
8.171 User_Defined_ComMPONENTS..........oooiiiieieieeee et e 31
9. Machine Learning COMPONENTS..........ccociuiiiiiiiiiiieee e 33
9.1 NER FEature EXIrACTON.......coiiiiiiiiiieeee ettt 33
9.1.1 DF_Brown_clustering_featurecooeoi oo 34

9.1.2 DF_Dictionary_loOKUP_featurecceeiieiiiieieeeeeeeeeee e 35

0.1.3 DF_NGram_fEatUrecc.ooeiiiieieeeee ettt 37

9.1.4 DF_prefix_suffiXx_feature.............ocooeoieiiieieeeee e 37

9.1.5 DF_Random_indexing_featurec..cceeiioieoieeceeeeeceeeeeeeee e 37

Clamp Documentation Page 1

0.7.6 DF _S@CHION_FRATUI ..o e e e e e 38

9.1.7 DF_Sentence_pattern_feature...........cccoovieiiiiicieeeeeeeeeee e 38

9.1.8 DF_Word_embedding_feature............cooieiiiiieieeeeeeee e 38

9.1.9 DF_Word_shape_feature..........cccoiiiieiiiiieeeeeeeee e 39
9.1.10 DF_Words_regular_expression_feature............ccccooveeiieeieiiieciieceeceeee e 39

T0. BUild @PIPeliN@ ...cooceeeeeee e 41
10.7 Create and RUN @ PIPEIINE........oooiiiieeeeeeee et e 41
10.2 Configure the PIPEIINEc..ooeeeeee e e 43
10.3 Component dependency & AULO fiXccouiieiiiiiiiiiieeeeeee e 44
TO.4 IMPOrt INPUL TIES .ottt et e 46
T1. RUNThe PIPEIINE ..o 50
12, Output visualization............cccuviiiiiiii e 5T
13, BUIt-IN PIPEHNES ... 53
14. Export pipelineas ajarfile.......cccooouiiiiiiiiieeeee e 57
TS, ANNOTATION .ot 58
TS5.T ANNOTATE COMPUSoeiiiieiiiee ettt e e et e e e e e art e e e e eaaseeeeeasseeeeennneens 58
T5.7.T Create @ PrOJECT......oi ettt ettt et e et e e st e e st eessnaeeenaeeensee s 58
15.1.2 Import anNotation fil€Sccui i 60
15.1.3 Define entity & relation tYPeScoovvieeeeeeee e 63
T5.1.4 Start ANNOTATIONcoouiiiiiie et 67
15.1.5 Visualization of entity & relationccooieoieiiiicieeeee e 68
15.1.6 Pre-Annotation of entity and relationcccoooveviiiiiiicicccceceee e 69

16. Machine learning model development.............cccoviiiiiiiiiciiii e, 71
16.1 Building machine learning models (NER mModel)ccccoveieiiiiinieieicieeieee 71
16.2 Check output MOdelS & 10GSccuviiuiiiiiiceeec e 74
16.3 Use your own model in PIPelIINEcviiiiiiie e 75
16.4 Visualization for error analySiS..........ceoieiuieiiiiicieciee et 77

Clamp Documentation Page 2

Clinical Language Annotation

Modeling and Processing Toolkit System

Version 1.1.7

1. Introduction

The CLAMP System is a comprehensive clinical Natural Language Processing software that
enables recognition and automatic encoding of clinical information in narrative patient
reports. In addition to running a clinical concept extraction pipeline as well as an annotation
pipeline, the individual components of the system can also be used as independent modules.
The system lends itself for diverse applications in a broad range of clinical domains. The
high performance language processing framework in CLAMP consists of the following key

building blocks:
NLP Pipelines

CLAMP components builds on a set of high performance NLP components that were proven
in several clinical NLP challenges such as i2b2 , ShARe/CLEF , and SemEVAL. A pipeline can
be created and customized by a simple drag and drop on the individual CLAMP components
in the order that is desired. Upon creation of the pipeline, CLAMP checks for errors in
sequence and directs the user to the appropriate logical order with insertion of the required
components for a working pipeline. The CLAMP components are supported by knowledge
resources consisting of medical abbreviations, dictionaries, section headers, and a corpus
of 400 annotated clinical notes derived from MTsamples, a freely available resource of
clinical narrative text. CLAMP also provides built-in pipelines ready for use out of the box for

a series of common clinical applications.

Clamp Documentation Page 3

Machine learning and hybrid approaches

The CLAMP framework provides alternative components for some tasks, utilizing rule based
methods and/or machine learning methods such as support vector machines, and
conditional random fields. These components can be customized by re-training on an
annotated corpus, or editing the rule sets within the CLAMP GUI to achieve a custom NLP
task. The CLAMP GUI version also provides built-in functionality to test the model, using the

annotated corpora or n-fold cross validation.
Corpus management and annotation tool:

The user interface also provides required tools to maintain and annotate text corpora. It

hosts an improved version of the brat annotation tool (reference?) for textual annotations.

2. System Requirements

CLAMP is a stand-alone Java application based on the Eclipse platform technologies.
CLAMP uses the Apache UIMA (Unstructured Information Management Architecture)
framework. The annotation module of CLAMP incorporates and enhances the brat rapid
annotation tool . For the other individual constituents, Apache OpenNLP toolkit, Liblinear and
CRF Suite are utilized in addition to in-house rule-based components. CLAMP also use the

UIMA Ruta (Rule based Text Annotation) as a rule engine to help users specify rules.

CLAMP is distributed as a ready-to-use binary package that can either be executed at the
command line or carries the associated Graphic User Interface (GUI). Our distribution
package includes components for jar files, CRFSuite, and a Lucene index of all levels of UMLS
data.

The only prerequisite necessary to compile CLAMP is JRE 1.8 (Java Runtime Environment).
Please ensure that you have Java 8 or higher installed in your system. Run the following

command in both Mac and Windows to check your version:

java -version

Clamp Documentation Page 4

Here is an example of what you will see when running the command in Windows:

C:\Windows\system32\cmd.exe

Microsoft Windows [Uersion 6.1.76011
opyright (c) 20809 Microsoft Corporation. All rights reserved.

C:\Users\ >java —version
java version "1.8.8_25"
lJava(TM> SE Runtime Environment <(build 1.8.8_25-hi8)
ava HotSpot(TM)> 64-Bit Server UM (build 25.25-hB2, mixed mode>

IC:\Users\ >java —version

If your java version is not 1.8, it is available for download from the Oracle website at

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-

2133151.html. An UMLS account is required in order to use Level 2 and higher data in the
UMLS encoding component of the system. The account can be created at

https://uts.nlm.nih.gov/home.html. You will have to enter your UMLS username and

password when prompted by CLAMP in order to utilise the UMLS encoding component.

CLAMP also uses the computer’s default browsers to visualize the clinical documents. Since
all browsers do not completely support all the aspects of the technologies used to implement
the visualization, limitations exist in term of running the CLAMP annotation module in the
browsers. On the Windows 0OS, the Internet Explorer should be higher than IE9; On Macintosh

computers, Safari (all versions) works well with CLAMP.

Clamp Documentation Page 5

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://uts.nlm.nih.gov/home.html

3. Installation

Extract the contents of archive (Clamp_1.1.7_win.zip or Clamp_1.1.7_mac.zip) to your
directory of choice. CLAMP application resides in the root folder of your archive. After
extraction, double click on StartClamp(.exe) file to start CLAMP. For the CLAMP command

line version please refer to the readme file. For further information and troubleshooting,

please refer CLAMP website at http://clamp.uth.edu.

4. How to run CLAMP

You can run the GUI version of CLAMP by double clicking on the startCLAMP icon. Once the
software is completely loaded, you will notice a welcome tab. Close the tab to go to CLAMP
working environment.

Close the tab to go to CLAMP

& Clamp Toolkit ; :
WOFkII’]g environment

File View Help

[Welcome ¥

Welcome to Clamp Toolkit

Clamp Documentation Page 6

http://clamp.uth.edu/

5. Package Description

Since CLAMP is a stand-alone eclipse plugin, its folder structure is similar to other eclipse
plugins.

Configuration Folder:

This folder contains CLAMP configuration files.

StartCLAMP:
This is the launching point for the CLAMP GUI. In Windows, this is an executable file while in

Mac, this is an application.

CLAMP_MAC_1.1.7

2 Bm o = % Q
Mame ~ Date Maodified Size

[configuration Jul 21, 2016, 3:54 PM
[plugins Jul 21, 2016, 10:48 AM --
g& StartGlamp Jul 21, 2016, 10:48 AM 74 KB

[workspace Jul 25, 2016, 9:38 AM

Workspace Folder:
This folder contains seven sub-folders:

1. ComponentLibrary: contains the components used in machine learning feature
extraction and NLP functions.

2. MyCorpus: contains the customized corpus built by the users.

3. MyPipeline: contains the customized pipeline created by users for clinical notes
processing.

4. PipelineLibrary: contains the built-in pipelines ready to use for a series of common
clinical applications.

5. Log: Includes CLAMP run-time log files

6. Metadata: The metadata used by CLAMP are included in this folder.

7. Resources: This folder includes third-party libraries. Currently it has two items:

7.1 CRFSuite: the CRF implementation for Name Entity Recognition tasks

Clamp Documentation Page 7

7.2

7.3

Umls_index: the Lucene index built for CLAMP based on the UMLS thesaurus. If

you want to use UMLS terminologies, then you will need to create an UMLS

account. Please follow the following link to create an UMLS account if you do not

have any.

https://uts.nlm.nih.gov//license.html

groupld

org.cleartk

org.ini4j
org.apache.uima
com.google.code.gson
org.apache.uima
org.apache.uima
org.apache.uima
de.bwaldvogel
org.apache.lucene
org.apache.lucene
org.apache.lucene
org.apache.opennlp
org.apache.ctakes
org.cleartk
com.googlecode.clearnlp
commons-codec
domdj
org.apache.uima
javax.servlet
com.sun.jersey
junit

commons-cli
net.jodah
org.javatuples

Clamp Documentation

The following table lists libraries included in CLAMP.

artifactid
cleartk-ml-liblinear
ini4j

uimafit-core

gson

uimaj-core

uimaj-cpe
uimaj-document-annotation
liblinear

lucene-core
lucene-analyzers-common
lucene-queryparser
opennlp-tools
ctakes-type-system
cleartk-named-entity
clearnlp
commons-codec
domdj
ruta-ep-engine
servlet-api
jersey-client

junit

commons-cli
concurrentunit
javatuples

version
2.0.0

0.5.2

2.1.0

2.3

2.6.0

2.6.0

2.6.0

1.94

5.2.1

5.2.1

5.2.1
1.5.1-incubating
3.2.0

0.6.6

1.3.1
20041127.091804
1.6.1

2.3.0
3.0-alpha-1
1.19

4.12

1.3

0.4.2

1.2

Page 8

https://uts.nlm.nih.gov/license.html

6. Import existing projects into the new version

On Windows, simply copy contents of your previous work folder (i.e. from older
Clamp_x.xx.xx_win\workspace\MyPipeline\ contents to new
Clamp_x.xx.xx_win\workspace\MyPipeline\ contents) using Windows Explorer and
restart CLAMP if it's already running. On startup, CLAMP will recognize these projects and

import them into your workspace.

On MacOSX, similarly copy contents of your previous work folder (i.e. from older
Clamp _x.xx.xx_win/workspace/MyPipeline/ contents to new
Clamp_x.xx.xx_win/workspace/MyPipeline/ contents) using Finder and restart CLAMP
if it's already running. On startup, CLAMP will recognize these projects and import them into

your new workspace.
6.1 Annotated documents used in CLAMP

The pre-annotated notes are crawled from 'http://www.mtsamples.com/' that has lots of

publicly available de-identified notes. But only ‘discharge summary' and ‘general

medicine' are included in CLAMP.

We annotated all the ‘problem’, 'treatment’ and 'test’ mentions in the notes, based on the 12B2
2010 NER guideline.

https://www.i2b2.org/NLP/Relations/assets/Concept%20Annotation%20Guideline.pdf

7. Contact us

The CLAMP System was developed by Dr. Hua Xu's team from the School of Biomedical

Informatics at the University of Texas Health Science Center in Houston.

For technical issues, please contact: Jingqgi.Wang@uth.tmc.edu

For any other issues, please contact: Anupama.E.Gururaj@uth.tmc.edu

Clamp Documentation Page 9

http://www.mtsamples.com/
https://www.i2b2.org/NLP/Relations/assets/Concept%20Annotation%20Guideline.pdf
mailto:Jingqi.Wang@uth.tmc.edu
mailto:Jingqi.Wang@uth.tmc.edu
mailto:Anupama.E.Gururaj@uth.tmc.edu

8. NLP Components

8.1 NLP Components

NLP components are used for processing text. CLAMP offers multiple NLP components that

are the building blocks for performing any of the NLP tasks. The individual components are

provided as pre-built modules that are to be used in building pipelines for automatic text

processing, as well as training customized machine learning models. Figure 8.1 displays the

CLAMP NLP components, as well as its associated tools, algorithms and resources. In this

section, we will provide details about each NLP component including their function as well

as ways to customize them using your own dictionary/model. In “Build a Pipeline” section,

we have tutorials that touch on use cases wherein the components are utilized in various

applications.
NLP Components Tools Resources
Lexicon -
Sentence detector Variants Section
Header List
{ } Generator
Tokenizer .
{} Annota‘non Annotated
interface
Corpus
’ POS tagger ‘
= OpenNLP Medical
‘ Chunker ‘ Abbreviations
@ Algorithms
‘ Section header identifier ‘ CIB"‘:‘:W_n Dictionaries
@ ustering
| NER feature extractor ‘ Eﬂadl(:(?r?;
‘ Named entity recognition ‘ Em\sleodrging
Assertion ‘ SVM
CRF

‘ UMLS Encoder

Figure 8.1 Schema of NLP Components

Clamp Documentation

Page 10

8.2 Sentence Detector

A sentence is defined as the longest whitespace trimmed character sequence between two
punctuation marks. A Sentence Detector utilizes different methods to detect a sentence. As

shown in Figure 8.2, CLAMP provides three different models to detect a sentence:
1. DF_CLAMP_Sentence_Detector

2. DF_CLAMP_Sentence_by_newline, and

3. DF_CLAMP_OpenNLP_sentence_detector

Each model is described in detail in the following sections.

(A Component 2

= descriptor

= Named_entity_recogizer

= PO5_tagger

= Ruta_rule_engine

= Section_identifier

w [= Sentence_detector

v [# DF_Clamp_sentence_detector
config.conf
= defaultAbbrs.b

v [DF_Detect_sentences_by_newline
config.conf

~ # DF_OpenNLP_sentence_detector
config.conf
= en-sent.bin

= Tokenizer

= UMLS_encoder

= User_Defined_Components

Figure 8.2 Three sentence detectors and their configuration files

Clamp Documentation Page 11

1. DF_CLAMP_Sentence_Detector:

DF_CLAMP_Sentence_Detector is the default sentence detector in CLAMP. It is designed
specifically for clinical notes and takes into account the distinctive characteristics observed

in sentences found in clinical texts.

To configure the DF_CLAMP_Sentence_Detector, please click on the config file. A pop-up
window opens where you can modify two parameters: Medical Abbreviation, and Max

Sentence Length.
Medical Abbreviation:

There are some medical abbreviations that have punctuation marks at their beginning
(“.NO2) while some of them have it at the end (spec.). Providing a list of such abbreviations
would help the detector to identify sentences more accurately. By default, CLAMP has
provided a comprehensive list of medical abbreviation which can be found in this file:
defaultAbbrs.txt

A) To replace the abbreviation file:

1. Double click on config.conf file to open it
2. Click on the button with three dots to browse for your own file

3. Click on the open button

A) 2- Click the button with three | -
Component name: Sentence detector dOtS tO brOWSG for your own flle

Processor name: Clamp sentence detector
Params

Medical Abbrew‘ations| defaultAbbrs.txt |

Break long sentence or not?
Treat "\n' as sentence end or not?

& config.conf 22

Max sentence \ength| 500 |

O
T « Sente.. » DF_Clamp_sentence... v O Search DF_Clamp_sentence_d.. P
Organize ~ New folder =~ M 0
Name Date modified Type

3 Quick access

= Documents _| config.conf CONF File|

s Downloads | defaultAbbrs Text Docu

= Pictures

& Google Drive

L Perimontagion ¢ € >

File name: ‘Myfile v‘ o ~

Open A Cancel
A) 3- Click on the Open button i

Clamp Documentation Page 12

B) To edit the current file:

1. Double click on the defaultAbbrs.txt file to open it
2. Add the terms that you want to include in the abbreviation file

3. Click on the Save button on the toolbar

 New Project || . = d6 - @ Y Tutorial A a
(8 Component 5 € : ¥ = O H B *defaultAbbrs.txt &2
B) 3- Click the Save button
T8 ML_components A SCan
+ 13 NLP_components 5
. - - LN
= Assertion_classifier ‘00
= Chunker B) 2- Add the terms that you 01
& descriptor want to include in the file I 0o
= Named_entity_recogizer '80
= POS5_tagger '81
= Ruta_rule_engine '82
= Section_identifier : 83
w (= Sentence_detector \ Eé
~ [DF_Clamp_sentence_detector 86
config.conf . . '
- J B) 1- Double click on defaultAbbrs.txt file 81
=/ defaultAbbrs.txt 4 | '88

Max Sentence Length

Checking the checkbox for “Break long sentences or not?” allows users to break long

sentences into the number of words that they have specified in the input textbox. Please

refer to Figure 8.3 for more information.

config.conf &2

Component name: Sentence detector
Processor name: Clamp sentence detector

Params

Medical Abbreviations | defaultAbbrs.txt

Break long sentence or not?
Treat "\n' as sentence end or not?

Max sentence Iength| 500

Figure 8.3 Interface for config.conf of the DF_CLAMP_Sentence_Detector

Clamp Documentation

Page 13

2. DF_CLAMP_Sentence_by_newline

This detector will identify new sentences using the line breaks in the file, i.e., each line in the

file is treated as a single sentence.

3. DF_CLAMP_OpenNLP_sentence_detector.

This is an OpenNLP sentence detector which advanced users can use its config.conf file to

change its default model.
A) To replace the default model:

1. Double click on config.conf file to open it

2. Click on the button with three dots to browse for your own file

3. Click on the open button

config.conf & = B8
Component name: Sentence detector
Processor name: OpenNLP sentence detector A) 2- Click on the button with
Params three dots to browse for your file
OpenNLP sentence detector model file | en-sent.bin
\Q Select >
uN « Sente.. * DF_OpenNLP_sente.. v O Search DF_OpenNLP_sentence.. 2
Organize ~ New folder =+ I @
)
Quick access ~ MName Date modified Type
|5 Documents | | config.conf 7/20/2016 407 PM CONF File
3 Downloads | | en-sent.bin 7/20/2016 407 PM BIN File
= Pictures
« Google Drive
N mm A~ N {)
File name: || v [EE b
A) 3- Click on the Open button |—»| Open |~ Cancel

Clamp Documentation

Page 14

8.3 Tokenizer

A Tokenizer segments the text into a sequence of tokens. As shown in Figure 8.4, CLAMP

provides three different models of tokenizer:

1. DF_CLAMP_Tokenizer
2. DF_ OpenNLP_Tokenizer

3. DF_Tokenize_by_spaces

Each model will be described in more details.

(3 Component &2

= descriptor

= Named_entity_recogizer

= POS5_tagger

= Ruta_rule_engine

= Section_identifier

= Sentence_detector

= Tokenizer

~ [DF_Clamp_tokenizer
config.conf
=/ defaultTokenRule.txt

~ [DF_OpenNLP_tokenizer
config.conf
=l en-token.bin

~ [DF_Tokenize_by_spaces
config.conf

= UMLS_encoder

= User_Defined_Components

Figure 8.4 Three tokenizers and their configuration files

Clamp Documentation

Page 15

1) DF_CLAMP_Tokenizer

DF_CLAMP_Tokenizer is the default tokenizer designed specifically for clinical notes.

Advanced users can use the config.conf file to change the default tokenization.

A) To replace the default file:

1. Double click on config.conf file to open it

2. Click on the button with three dots to browse for your own file

3. Click on the open button

config.conf &2

Component name: Tokenizer
Processor name: Clamp tokenizer

Params

A) 2- Click on the button with
three dots to browse for your file

Rule ﬁle| defaultTokenRule.txt

\5 Select

Organize ~ New folder

N
) . Name
3+ Quick access

| | config.conf
= defaultTokenRule

= Documents
& Downloads
= Pictures

+ Google Drive
v £

™ <« Token.. > DF_Clamp_tokenizer

v) Search DF_Clamp_tokenizer y e

=~ W @

Date modified Type

7/20/2016 407 PM CONF File

7/20/2016 4:07 PM

File name: ‘My‘[okenizer

A) 3- Click on the open button

o M e

Text Docu

X

Clamp Documentation

Page 16

2) DF_ OpenNLP_Tokenizer

This is an OpenNLP tokenizer. Advanced users can use its config.conf file to change its

default model, en-token.bin.
A) To replace the default file:

1. Double click on config.conf file to open it
2. Click on the button with three dots to browse for your own file

3. Click on the open button

config.conf &2 = B8

Component name: Tokenizer

Processor name: OpenNLP tokenizer A) 2- Click on the button with
three dots to browse for your file \

Params

OpenNLP tokenizer model file | en-token.bin |

O Select X
4N « Toke.. * DF_OpenNLP_tokeni.. v | Search DF_OpenNLP_tokenizer @
Organize ~ New folder = ~ [N 0
= e ~ Name Date modified Type
% Documents | | config.conf 7/20/2016 407 PM CONF File
Downloads || en-token.bin 7/20/2016 407 PM BIN File
= Pictures
¢ Gooagle Drive
Flaman e 2 ()
File name: ‘My‘tckenizer v‘ e w

A) 3- Click on the open button |—» Cancel

3) DF_Tokenize_by_spaces.

This tokenizer uses the spaces in a sentence to separate the tokens.

Clamp Documentation Page 17

8.4 Pos Tagger

A Pos tagger allows users to assign parts of speech to each token. As shown in Figure 8.5,
CLAMP currently provides only one pos tagger, DF_OpenNLP_pos_tagger, designed
specifically for clinical text. This tagger is built from re-training the OpenNLP pos tagger on
a dataset of clinical notes, namely, the MiPACQ corpus.

(http://clear.colorado.edu/compsem/index.php?page=endendsystems&sub=mipacq).

Advanced users can use the config.conf file to change the default pos tagger model-

mipacqg_pos.bin.

(2 Component 2

T8 ML_components
~ 18 NLP_components
= Assertion_classifier
= Chunker
= descriptor
= Named_entity_recogizer
~ (= POS5_tagger
~ [DF_OpenMNLP_POS_tagger
config.conf
=| default_pos.bin
= Ruta_rule_engine
= Section_identifier
= Sentence_detector
= Tokenizer
= UMLS_encoder
= User_Defined_Components

Figure 8.5 DF_OpenNLP_pos_tagger and its configuration files

Clamp Documentation Page 18

http://clear.colorado.edu/compsem/index.php?page=endendsystems&sub=mipacq

8.5 Chunker

A chunker does a shallow parsing of a sentence and identifies the syntactic constituents

such as noun phrases, verb phrases, and etc. As shown in Figure 8.6, CLAMP currently

provides only one single chunker, DF_OpenNLP_chunker, which is a wrapper of the chunker

in OpenNLP. Advanced users can use the config.conf file to change the default chunker

model- en-chunker.bin.

(& Component 2

T8 ML_components
+ 18 NLP_components

= Assertion_classifier

= Chunker

~ [DF_OpenNLP_chunker
config.conf
=| en-chunker.bin

= descriptor

= Named_entity_recogizer

= POS_tagger

= Ruta_rule_engine

= Section_identifier

= Sentence_detector

= Tokenizer

= UMLS_encoder

= User_Defined_Components

Figure 8.6 DF_OpenNLP_chunker and its configuration files

Clamp Documentation

Page 19

8.6 Named Entity Recognizer

A named entity recognizer identifies named entities and their semantic types in text.
Typically, named entities refer to clinical concepts in CLAMP. As shown in Figure 8.7, CLAMP

provides two different models for named entity recognition:
1. DF_CRF_based_named_entity_recognizer ,and

2. DF_Dictionary_lookup

3. DF_Regular_expression_NER

Each model will be described in more details.

(3 Component &2

= Chunker
= descriptor
(= Named_entity_recogizer

~ [DF_CRF_based_named_entity_recognizer
config.conf
= defaultModel jar

~ 2 DF_Dictionary_lookup
config.conf
=l defaultDict.txt

~ [DF_Regular_expression_MNER
config.conf
= defaultRegExpr.ixt

= POS5_tagger

= Ruta_rule_engine

= Section_identifier

= Sentence_detector

= Tokenizer

= UMLS_encoder

Figure 8.7 Three named entity recognizers and their configuration files

Clamp Documentation Page 20

1. DF_CRF_based_named_entity_recognizer

DF_CRF_based_named_entity_recognizer is the default named entity recognizer used in

CLAMP. The recognizer identifies three types of clinical concepts:

Problems, treatments, and tests.

It is built from training the CRF model on a dataset of clinical notes, namely, the i2b2 2010

challenge corpus (https://www.i2b2.org/NLP/Relations/). Advanced users can use the

config.conf file to change the default recognizer model as in the file defaultModel.jar.

A) To replace the default file:

1. Double click on the config.conf file to open it

2. Click on the button with three dots to browse for your own file

3. Click on the open button

config.conf &

Component name: Named entity recogizer
Processor name: CRF based named entity recognizer

Params

A) 2- Click on the button with
three dots to browse for your file

NER model file| defaultModel.jar

§§ Select

Organize ~

F)
Quick access

|5 Documents
Downloads
= Pictures

¢ Google Drive
L

[I o D o -

™ <« Nam..

New folder

<

> DF_CRF_based_nam...

Name

| | config.conf
|| defaultModel

10 -

Date modified

7/20/2016 4:.06 PM

7/20/2016 407 PM

File name: |Myfi|e

A) 3- Click on the open button

m @

Cancel

Type

CONF File

Executab

Clamp Documentation

Page 21

https://www.i2b2.org/NLP/Relations/

2. DF_Dictionary_lookup

DF_Dictionary_lookup uses terms in the dictionary to match them directly with the identified
named entities. Currently the defaultDic.txt used in CLAMP consists of terms and their

semantic types from UMLS (https://www.nlm.nih.gov/research/umls/). The semantic type

of the matched term in UMLS is assigned to the recognized named entity.
To configure DF_Dictionary_lookup:

First, click on the config file under the DF_Dictionary_matcher folder. This will open up a new
window that takes the following three parameters: Case sensitive, Stemming and

Dictionaries.(Figure 6.8)
Case sensitive

If you check the checkbox for “Case sensitive”, the matcher will differentiate between capital
and lowercase letters when searching for a term in the dictionary. For example, “Breast

Cancer” will not matched with “breast cancer”.
Stemming

If you check the checkbox for “Stemming”, the matcher will match the stemmed form of a
candidate named entity with the terms in the dictionary. For example, “breast cancers” will

be matched to “breast cancer”.
Dictionaries

You can also replace or edit the dictionary file suggested for this function.

Clamp Documentation Page 22

https://www.nlm.nih.gov/research/umls/

A) To replace the default dictionary file:

1. Double click on config.conf file to open it

2. Click on the button with three dots to browse for your own file

3. Click on the open button

config.conf &2

Component name: Named entity recogizer
Processor name: Dictionary lookup
Params
[Case sensitive
[]Stemming

A) 2- Click on the button with
three dots to browse for your file \

Dictionaries| defaultDict.txt

= Pictures

¢ Google Drive
<

Mimd mmledinm Mimeis

\5 Select
™ « Nam.. > DF_Dictionary_look..
Organize ~ New folder
Lol
3 Quick access Name
|Z Documents L] config.conf
3 Downloads Ij defaultDict

X
v O Search DF_Dictionary_lookup P
= @

Date modified Type

7/20/2016 407 PM CONF File
7/20/2016 407 PM Text Docu

File name: |Myfi|e

a)3- Click on the open button | Open " Cancel

Clamp Documentation

Page 23

B) To edit the current dictionary file:

1. Double click on the defaultDict.txt file to open it
2. Add the terms that you want to include in the dictionary file

3. Click the Save button at the top of the page

Y Clamp Toolkit
File View Help

=+ New Project (=] 4« @ Y Tutorial A a
@ Component & € T ¥ = O [B defaultDictxt 2
13 ML_components ~ I# sdrgs LABTEST
~ W8 NLP_components B) 3_ C||Ck the save bUttOﬂ # serum drug confrm LABTEST
= Assertion_classifier # udx.:gs LABTEST
. Chunker # urine drug confrm LABTEST
= . # wbc 's counted LABTEST
& descriptor # wbche LABTEST
~ = Named_entity_recogizer B UNIT
(# DF_CRF_based_named_entity_recognizer % abnormal LABTEST
~ [# DF_Dictionary_lookup % free psa LRBTEST
@ config.conf i hgb # 1 LRABTEST
- defaultDictixt * hob # 2 LARTEST
& DF Requl ion NER % hgh # 3 LABTEST
& DF egular_expression_| % hab # 4 LARTEST
B) 1- Doubel click on the B) 2- Add the terms that you want to
defaultDict.txt file to open include in the dictionary file file

3. DF_Regular_expression_NER

Using the defaultRegExpr.txt file, this module can identify named entities. defaultRegExpr.txt
file can contain several regular expression. If a phrase matches a regular expression, it is
recognized as a named entity. You can add your own regular expression to the existing file

by double clicking the file and add the items that you want to include.

Clamp Documentation Page 24

8.7 Assertion Identifier

An Assertion identifier checks whether there is a negation related to a specific clinical
concepts in the text. A negation means the absence or opposite of something positive.
CLAMP Assertion Identifier provides a mechanism to examine the real-world implications of
annotations in a given clinical text. The defaultNegexDict.txt file which contains common
negation patterns is used by CLAMP to check for negation in a clinical text. You can either

replace or edit this file by following the steps below (Figure 8.8).

(A Component I3

~ 18 ML_components
= MNER_feature_extractor
~ 18 NLP_components
~ = Assertion_classifier
~ [DF_NegEx_assertion
config.conf
=| defaultNegexDict.txt
= Chunker
= descriptor
= Named_entity_recogizer
= POS5_tagger
= Ruta_rule_engine
= Section_identifier
= Sentence_detector
= Tokenizer
= UMLS_encoder
= User_Defined_Compaonents

Figure 8.8 Assertion identifier and its configuration file

Clamp Documentation Page 25

A) To replace the Negation list file:

1. Double click on config.conf file to open it
2. Click on the button with three dots to browse for your own file

3. Click on the open button

config.conf & = 5
Component name: Assertion classifier . i
Processor name: NegEx assertion A) 2- Click on the button with Fhree
dots to browse for your own file \
Params
NegEx dictionary| defaultNegexDict.txt ‘
Y Select X
YK « Assert.. > DF_NegEx_assertion v U | Search DF_NegEx_assertion el
Organize ¥ New folder = m @
SF Quick aceess Name Date modified Type
T 7;’ ’.f 3 PM FF
& Creative Cloud Fil | | config.conf 2072016 4:.06 PM CONF File
= defaultNegexDict 7/20/2016 406 PM Text Docu
#& OneDrive
= This PC I < >
File name: |My‘file V‘ i ~
A) 3- Click on the Open —> Cancel

B) To edit the current dictionary file:

1. Double click on the defaultNegexDict.txt file to open it
2. Add the terms that you want to include in the dictionary file

3. Click the Save button at the top of the page

=7 New Project = g v @ O Tutorial A a

A Component & © v =0 B

« B ML_components B) 2- Add the terms that

you want to include in

= MNER_feature_extractor B) 3- Click the Save button the dictionary file
~ 18 NLP_components

no signific:
no interwval
no definite

~ [Assertion_classifier
~ [DF_NegEx_assertion

config.conf B) 1- Double click on the not extend
=/ defaultNegexDict. bt €— defaultNegexDict.txt file not cause
- to open it I

Clamp Documentation Page 26

8.8 Ruta_ Rule_Engine

UIMA Ruta rules can be used to create or modify annotations as well as create features for

annotations. Ruta rules in general can consist of a sequence of rule elements. A simple rule

elements consist of four parts: A matching condition, an optional quantifier, an optional list

of conditions and an optional list of actions. For more information please visit:

https://uima.apache.org

A) To replace the default file:

1. Double click on config.conf file to open it

2. Click on the button with three dots to browse for your own file

3. Click on the open button

config.conf &2

Component name: Ruta rule engine
Processor name: Ruta script file

Params

A) 2- Click on the button with three
dots to browse for your own file

Ruta script file| default.ruta

\§ Select

Organize v

= This PC

0N

3+ Quick access

#& OneDrive

« Ruta_rul.. > DF_Ruta_script_file

Mew folder

~ MName

|| config.conf
|| defaultruta

& Creative Cloud File

v <

v O

G- w

Date modified

7/20/2016 407 PM
7/20/2016 407 PM

File name: |My‘fi|e

v| %

A) 3- Click on the Open button

—> [opn T

Type

CONF Fi

RUTA Fi

Cancel

e

Clamp Documentation

Page 27

https://uima.apache.org/d/ruta-current/tools.ruta.book.html#ugr.tools.ruta.language.language

B) To edit the current dictionary file:

1. Double click on the default.Ruta file to open it
2. Add the terms that you want to include in the dictionary file

3. Click the Save button at the top of the page

= New Project = 4~ & Tutorial A a
& Component & € T ~ = 0O | o7 defaultruta
« 18 ML_components B) 3- Click the Save button ~ IP'YPESYSTEM ClampTypeSystem;
) at the top of the page
= NER_feature_extractor
v NLP_components B) 2- Add the rules that you want
v & Assertion_classifier to include in the dictionary file
DF_NegEx_assertion
= Chunker

= descriptor
= Named_entity_recogizer
= POS_tagger
~ [= Ruta_rule_engine
~ [DF_Ruta_script_file
config.conf B) 1- Double click on the
. defaultruta € | default.Ruta file to open it

8.9 Section Identifier

The section header identifier component identifies the section headers in a clinical note
based on a predefined dictionary and categorizes them into general categories (Figure 8.9).

E.g. the section header “ICD 10 code” will be assigned to the “icd_code” category.

(8 Component 2 ¢

~ T8 ML_components
= NER_feature_extractor
~ T8 NLP_components
~ = Assertion_classifier

[DF_NegEx_assertion
= Chunker
= descriptor
> Named_entity_recogizer
POS_tagger
~+ Ruta_rule_engine

PP PO DE

= Section_identifier

~ [DF_Dictionary_based_section_identifier
config.conf

=l section_map.txt

Figure 8.9 Section header identifier and its configuration file

Clamp Documentation Page 28

You can replace or edit the default dictionary, section_map.txt, following the steps below:

A) To replace the default file:

1. Double click on config.conf file to open it

2. Click on the button with three dots to browse for your own file

3. Click on the open button

& config.conf 22

Component name: Section identifier

Processor name: Dictionary based section identifier

A) 2- Click on the button with three
dots to browse for your own file

Params

Dictionary based section identifier‘ section_map.txt

5F Quick access

\5 Select
™ « Secti.. » DF_Dictionary_base..
Organize ~ New folder
~ ~

Name

| | config.conf

& Creative Cloud Fil

=l section_map

& OneDrive

% This PC Y <

X

File name: ‘My‘file

A) 3- Click on the Open button

Search DF_Dictionary_based_s.. 2
= o @
Date modified Type

7 016 407PM CONF File
7/20/2016 407 PM Text Docu
>

v| % ~

>

B) To add additional section headers to the current file:

1. Double click on the section_map.txt file to open it

2. Add the terms that you want to include in the file

3. Click the Save button at the top of the page

< New Project

= B~ @ O Tutorial A a

- = 7

[l section_map.ixt &

B Component 2 ¢
18 ML_components
~ T8 NLP_components
= Assertion_classifier
(= Chunker

B) 3- Click the
Save button at the
top of the page

activity

= descriptor

ksource and reliability

identify information
activity
procedural complication

source_and reliability

identifying information

identifying informat;iidentifyinginformation

complications

= Named_entity_recogizer
= POS_tagger
(= Ruta_rule_engine

1 cof

B) 1- Double click on the et
section_map.txt file to openit | 44
i

+ [= Section_identifier

~ & DF_Dictionary_based_section_identifi
@ config.conf
= section_map.txt

B) 2- Add the terms that you want
to include in the dictionary file

diagnostic procedure
plan / recommendations plan

plan recommendation plan

hpi / interval history history present_illness

laboratory and radiology

Clamp Documentation

Page 29

8.10 UMLS Encoder

A UMLS Encoder matches the terms of clinical concepts to its corresponding CUIs in UMLS.
For example, the term “breast cancer” will be encoded into the CUI of “C6006142" in UMLS.
Currently CLAMP provides a default dictionary based on the UMLS encoder as shown in
Figure 8.10.

(2 Component 2

T8 ML_components
~ 18 NLP_components
= Assertion_classifier
= Chunker
= descriptor
= Named_entity_recogizer
= POS_tagger
= Ruta_rule_engine
= Section_identifier
= Sentence_detector
= Tokenizer
w = UMLS_encoder
~ [DF_Dictionary_based_UMLS_encoder
config.conf
= User_Defined_Components

Figure 8.10 A dictionary based UMLS encoder

Clamp Documentation Page 30

8.11 User_Defined_Components

DF_Drug_Attribute_Connector:
This is a context free grammar parser which is extracted from Medex. It is used to connect

medication to its possible attributes such as dose.
DF_Relation_connector_after_ruta:

While connecting two named entities using Ruta is relatively easy, it can not be used to

provide a name for that relationship.

Advanced users can generate their own file and replace it with the system’s default file or
edit the default file.

A) To replace the default file:

1. Double click on config.conf file to open it
2. Click on the button with three dots to browse for your own file

3. Click on the open button

config.conf & = B

Component name: User Defined Components . .
Processor name: Relation connector after ruta A) 2- Click on the button with three

dots to browse for your own file

Params

relation connection script file| relationConnection.txt |

O Select X
Yk « User_.. * DF_Relation_connec... v Q| | Search DF_Relation_connector.. @
Organize ~ New folder = o @
R — ~ Name - Date modified Type
& Creative Cloud Filt | | config.conf 7/20/2016 407 PM CONF File
=] relationConnection 7/20/2016 407 PM Text Docu
& OneDrive
= This PC i >
File name: |My‘file V| 20 ~

A) 3- Click on the Open button > Cancel

Clamp Documentation Page 31

B) To edit the current dictionary file:

1. Double click on the relationConnection.txt file to open it
2. Add the terms that you want to include in the file

3. Click the Save button at the top of the page

=+ New Project 4~ @ Y Tutorial A a
[Component 22 ¢ =8 [El relationConnection.txt 2
= Chunker ~ # 1. set relation names to the ClampRelation which is gathered by Ruta rules;
& descriptor m=[labvalue] BND to=[test] THEN relation=[valueCf]
£ Named_entity recogizer B) 3- CIle the Save button m=[Disorder] BND to=[Uncertainty] THEN relation=[uncof]
- POS 1 B - m=[Discrder] BND to=[Conditicn] THEN relation=[cndCf]
'f/ -tagger . at the tOD Of the page m=[Disorder] AND to=[Severity]QTHEN relation=[sevOf]
= Ruta_rule_engine TF from=[Disorder] AND to=[Bodyloc] TNEN relation=[locOf]
= Section_identifier
(= Sentence_detector # 2. deal 1:.Jith overlappe B) 2- Add the rUIeS that you
= Tokenizer IF from=[Disorder] OVERL] . . .]
£ UMLS encoder IF from=[Bopyroc] overza| Wanttoinclude in the file tionof]

<

= User_Defined_Components

~ [# DF_Drug_Attribute_Connector
config.conf
2 MedexGrammar.txt

(% DF_Dysplasia_document_summarization B) 1_ Double CIiCk on the
v [## DF_Relation_connector_after_ruta . .
config.conf relationConnection.txt
= relationConnection.bet file to open it

Clamp Documentation Page 32

9. Machine Learning components

9.1 NER Feature Extractor

This component consists of different feature extractors (Figure 9.1), which are used for
extracting different types of features for named entity recognition, CLAMP users will use this
component to build their own named entity recognizer in a corpus annotation project (Refer
to Section 4.2) . Similar to the previous components, we can customize these features by

changing or replacing their default config files. Explanation of each extractor is as follows:

(3 Component 2

~ 18 ML_components

~« = NER_feature _extractor
2 DF_Brown_clustring_feauture
DF_Dictionary_lookup_feature
2 DF_Ngram_feature
DF_Prefix-suffix_feature
2 DF_Random_indexing_feature
DF_Section_feature
DF_Sentence_pattern_feature
2 DF_Word_embedding_feature
2 DF_Word_shape_feature
DF_Words_regular_expression_feature

13 NLP_components

Figure 9.1 List of NER feature extractors

Clamp Documentation Page 33

9.1.1 DF_Brown_clustering_feature

Itis a type of word representation feature generated on the unlabeled data which is provided
by the SemEval 2014 Challenge. Advanced users can eplace their own Brwon clustering file

with the system’s default file.
A) To replace the default file:

1. Double click on config.conf file to open it
2. Click on the button with three dots to browse for your own file

3. Click on the open button

config.conf & =R
Component name: NER feature extractor
Processor name: Brown clustring feauture A) 2- Click on the button with three
Params dots to browse for your own file \

Brown clustering path ﬁle| word_path.txt |

4 Select X
T « NER_.. * DF_Brown_clustring._... v O Search DF_Brown_clustring_fe.. R
Organize ~ MNew folder = ~ [N 0

~ . .
3 Quick access Name Date modified Type

| | config.conf 7/20/2016 4:.06 PM CONF File

=l word_path 7/20/2016 4:.06 PM Text Docu

@ Creative Cloud File
& OneDrive

@ This PC o >

File name: |M3rfi|e V| E b

A) 3- Click on the Open button |—» Cancel

For more information on how to create your own Brown Clustring file visit:

https://qithub.com/percyliang/brown-cluster

Clamp Documentation Page 34

https://github.com/percyliang/brown-cluster

9.1.2 DF_Dictionary_lookup_feature

This extractor uses a dictionary consisting of terms and their semantic types from UMLS to

extract potential features.
Advanced users can replace or edit the default file following the steps below:

Note: The format of the content should be as the same as the default file: (phrase then tab

then semantic type)
A) To replace the default file:

1. Double click on config.conf file to open it
2. Click on the button with three dots to browse for your own file
3. Click on the open button

config.conf 2 = 8

Component name: NER feature extractor

Processor name: Dictionary lookup feature A) 2- Click on the button with
three dots to browse for your own

Params

Dictionary ﬂle| defaultDict.txt |

O
T « NER_.. * DF_Dictionary_looku... v O Search DF_Dictionary_lookup_.. R
Organize ~ New folder = ~ [N 0
=L @il s ~ Name Date modified Type
fig.conf T 016 406 PM CONFFi
® Creative Cloud File | configon e e
=l defaultDict 7/20/2016 4:.06 PM Text Docur
Z& OneDrive
= This PC < >
File name: ‘My‘file w [v
A) 3- Click on the Open button |- Open |v Cancel

Clamp Documentation Page 35

B) To edit the default file:

1. Double click on the word_path.txt file to open it
2. Add the terms that you want to include in the file

3. Click the Save button at the top of the page

== New Project = 4~ @ (Y Tutorial A a
B Component 82 C K ¥ =g E defaultDict.txt &2
« T8 ML_components B) 3- Click the save button l¢ sdrgs LABTEST

serum drug confrm LABTEST
udrgs LABTEST

w = NER_feature_extractor #
#
urine drug confrm LABTEST
#
#
%

2 DF_Brown_clustring_feauture
~ [DF_Dictionary_lookup_feature
config.conf
=l defaultDict.txt <4

wbc 's counted LABTEST
wbchc LRABTEST \

B) 1- Doubel click on the

defaultDict.txt file to open UNIT

B) 2- Add the terms that you want
to include in the dictionary file file

Clamp Documentation Page 36

9.1.3 DF_Ngram_feature

This module uses the words along with their part-of-speech (pos) tagging as NER features.

9.1.4 DF_prefix_suffix_feature

This function extracts the prefix and suffix of words that may be a representative of a

specific type of named entities.

9.1.5 DF_Random_indexing_feature

Similar to the brown clustering, it is a type of word representation feature generated on

unlabeled data using a 3 party package. For more information visit:

https://ijcheminf.springeropen.com

A) To replace the default file:

1. Double click on config.conf file to open it

2. Click on the button with three dots to browse for your own file

3. Click on the open button

config.conf &2

Component name: NER feature extractor
Processor name: Random indexing feature

Params

A) 2- Click on the button with three
dots to browse for your own file

Random indexing ﬁle| random-indexing-train-dev-test-stem.thesaurus

\§ Select
45 « NER_.. * DF_Random_indexin... ~ O Search DF_Random_indexing_... @
Organize ~ New folder =~ W @
.. ~ MName - Date modified Type
& Creative Cloud Filt | | config.conf 7/20/2016 4:06 PM CONF File
|| random-indexing-train-dev-test-stem.the.. 7/20/2016 4:06 PM THESAURY
& OneDrive
@ This PC & S >
File name: |My‘file V| E ~
A) 3- Click on the Open button » Cancel
Clamp Documentation Page 37

https://jcheminf.springeropen.com/

9.1.6 DF_Section_feature

This function extracts the section in which a candidate named entity presents.

9.1.7 DF_Sentence_pattern_feature

This function distinguishes the pattern of a sentence by CLAMP built in rules.

9.1.8 DF_Word_embedding_feature

Similar to the brown clustering and random indexing, it is a type of distributed word

representation feature generated on the unlabeled data (MIMIC Il) provided by the SemEval

2014 Challenge using a neural network.Advanced users can replace the default file with their

own file.
A) To replace the default file:

1. Double click on config.conf file to open it

2. Click on the button with three dots to browse for your own file

3. Click on the open button

config.conf & = 0
Component name: NER feature ef(tractor A) 2- Click on the button with three
Processor name: Word embedding feature dots to browse for your own file
Params
Word embedding file| word_embedding_kmeans1000.txt |
\§ Select x
™ « NER_.. » DF_Word_embeddin... v | | Search DF_Word_embedding_.. R
Organize ~ New folder = ~ [a
-~ -~ - .
=\ G s MName Date modified Type
fig.conf 7/20/2016 406 PM CONF Fi
& Creative Cloud Filt LI config.con [ETIO e
=] word_embedding_kmeans1000 7/20/2016 4.06 PM Text Docu

#& OneDrive

@ This PC <

File name: |My‘file

R

* %

A) 3- Click on the Open button

[oper T

Cancel

Clamp Documentation

Page 38

9.1.9 DF_Word_shape_feature

This function extracts the type of a word; it identifies whether or not it begins with an english

letter, number, and etc.
9.1.10 DF_Words_regular_expression_feature

This function extracts the regular expression patterns of words that may indicate a specific
type of named entity. Advanced users can create their own regular expressions or edit the

default file.
A) To replace the default file:

1. Double click on config.conf file to open it
2. Click on the button with three dots to browse for your own file

3. Click on the open button

config.conf & = g
Component name: NER feature extractor
Processor name: Words regular expression feature A) 2- Click on the button with three
ErFS dots to browse for your own file \
Regular expression ﬁle| reglist.txt |
)
1 « NER_.. » DF_Words_regular_e.. v O Search DF_Words_regular_exp.. R
Organize ~ New folder =~ O @
~
~ . -
. Name Date modified Type
i 7/20/2016 406 PM CONF Fi
& Creative Cloud Fil || config.conf /2042016 4:06 CONF File
=l reglist 7/20/2016 4:06 PM Text Docul
#& OneDrive
@ This PC < >
File name: |My‘fi|e v |RE ~
A) 3- Click on the Open button [» COpen |~ Cancel

Clamp Documentation Page 39

B) To edit the default file:

1. Double click on the reglist.txt file to open it
2. Add the terms that you want to include in the file

3. Click the Save button at the top of the page

=7 New Project = @RIn v - Tutorial A a
(B Component 2 € Corpus \ v = 0 reglistixt &2
~ 18 ML_components B) 3- Click the save button SINGLE CAPCHAR ~[A-Z]S
w [= NER_feature_extractor INITDIGIT ~0-9].%
» [DF_Brown_clustring_feauture HAS DIGIT -*[0-9].~*
SINGLE_DIGIT ~[0-918]

» [DF_Dictionary_lookup_feature

DOUBLE DIGIT ~[0-9]1[0-9
> & DF_Ngram_feature iTH_REE DIGIT ~ {0_9} {[3}$] :
> (# DF_Prefix-suffix_feature #FOUR DIGIT ~[0-9]{4}5
» # DF_Random_indexing_feature #NATUEAL NUM ~T0-91+(,[0-81{3})
> (# DF_Section_feature MANY_NU'M_ [0-81{1,2}(,[0-5]{1,2
> [DF_Sentence_pattern_feature REAL NUM "-2[0-91+[\.100-91+3
> [DF_Word_embedding_feature #HAS] B) 2- Add the terms that you
> [DF_Word_shape_feature i;ﬁ; want to include in the file file

~ [DF_Words_regular_expression_feature
config.conf

= reglistixt €— : . .
B} - el reglist.txt file to open it

IN DESH ~ ([\w+][\-14)+\w+s

B) 1-Doubel click on the IS5 DRSH ~[-]+5
ALPHA NUM .*[A-Za-z].*[0-0].%|.*

Clamp Documentation Page 40

10.Build a Pipeline

10.1 Create and Run a Pipeline

Running a pipeline refers to the use of a set of NLP components to identify the specified
information , including sentence segmentation, tokenization, part of speech tagging,
abbreviations, etc. The NLP components are executed in a sequence based on the functional

dependency amongst them.
In order to recognize clinical concepts within clinical text:

1. You need to create a project
You need to configure the pipeline

You need to import the files that you want to be analyzed

DN

You need to process the imported files by running them through the pipeline.

Follow the steps below to build a pipeline:

A) Create a new project

1. Click on the plus (+) sign at the top left corner of the screen as shown in Figure 10.1.

Y Clamp Toolkit
File View Help

= New Project e

(B Component & Add new clamp project. |

T8 ML_components
T8 NLP_components

Figure 10.1 Create a new project

2. On the pop-up window (Figure 10.2), enter a name for your project, for example:
“Clinical_concept_recognition”.

3. Select NLP Pipeline as the project type.

4. Click the Finish button.

Clamp Documentation Page 41

A new project with the specified name is created and is placed under Mypipeline folder on
the Pipeline panel at the lower left of the screen (Figure 10.3)

\§ Create a new project O

Select Project Type

Creating a new project wizard: select project type

A) 2- Enter a name for the project

Project name:

Clinical _concept_recognition]| red
Choose NLP Te
~ (= Corpus
[%] Corpus Annotation
v & Applications A) 3- Select NLP Pipeline
“INLPPipeline €| 55 the project type.

A) 4- Click the Finish button \

Figure 10.2 Creating a new NLP pipeline project

P Pipeline & ¥ =8

~ [5 MyPipeline
‘P clamp-ner
~ ‘B Clinical_concept_recognition
~ (= Components
g= Clinical_concept_recognition.pipeline
= script
~ = Data
= Input
= Output
[t PipelineLibrary

Figure 10.3 A project with the specified name is created and is placed under Mypipeline folder

Double click the pipeline name to view its content. As you can see, it contains two folders
“Components”, and “Data”. The Components folder contains the pipeline configuration file.
The Data folder includes two folders: Input, and Output. The Input folder holds the files that
are processed by the pipeline. The results obtained by running the pipeline are saved in the

output folder.

Clamp Documentation Page 42

10.2 Configure the pipeline

To configure a pipeline double click on the .pipeline file from the newly created pipeline

project to open it in the middle window on the screen. (Figure 10.4).

Here you can drag and drop the NLP components from the Component panel. Since we want
to recognize clinical concepts using NLP components, we drag the

DF_CRF_based_name_entity_recognizer from the NLP_components to the pipeline.

03 Component 2 € =8 BE *Clinical_concept_recognition.pipeline =
~ 18 ML_components ~
N Move up | Move down | Delete m Edit
= NER_feature_extractor s -

~ 18 NLP_components

- K ssifi Name Component Description
= Tt
= CESE klon_c assitier e DF_Clamp_sentence_det.. * Sentence detector Rule based sentence detector
> Chunker
¢ descriptor e DF_Clamp_tokenizer # Tokenizer Rule based tokenizer
_ N . @ DF_Dictionary_based_sec... 2 Section identifier Dictionary based section header Identifier
~ (= Named_entity_recogizer
@ DF_OpenNLP_POS_tagger £ POS tagger OpenNLP based pos tagger

~ [DF_CRF_based_named_entity_recognizer
@ config.conf @ DF_CRF_based_named_e.. 2 Named entity recogizer ~ Name entity recognition using CRF
= defaultModel.jar

~ 2 DF_Dictionary_lookup
4 config.conf
|£ defaultDict.txt

~ [DF_Reqgular_expression_NER
config.conf

= defaultRegExpr.txt
= POS_tagger
(= Ruta_rule_engine v
P Pipeline 2 =0

~ [t5 MyPipeline
‘B clamp-ner
~ ¢ Clinical_concept_recognition
~ (= Components
5% Clinical_concept_recognition.pipeline

Figure 10.4 Pipeline configuration window

Clamp Documentation Page 43

10.3 Component dependency & Auto fix

As shown in Figure 10.5, there is a red X sign in front of the newly added component, “CRF
based named entity recognizer’. This sign indicates that the named entity recognizer
component is dependant on other NLP components that are missing from the current
pipeline. In our example, the clinical notes first need to be processed by the sentence
detector, tokenizer, section identifier, and POS tagger components before processing by the

named entity recognizer.

To fix this issue, simply click on the Auto fix button at the top of the panel. This automatically
adds the required components to the pipeline. The sequence of the individual components

from top to bottom reflect the order in which they will run to process your input data.

After the required components are added (Figure 10.6), the red X sign changes to the green
circle sign indicating the accuracy of the order of the components. Once you see the green
sign for each of the displayed NLP components, click on the Save button at the top of the

screen to save your changes.

U8 Component & ¢ T =8 B= *Clinical_concept_recognition.pipeline 2

~ 18 ML_components ~
N Maove up | Move down | |Delete | Auto fix || Edit
(== NER_feature_extractor

~ 13 MLP_components

K . Name Component Description
= Assertion_classifier

(= Chunker
(= descriptar
~ (= Named_entity_recogizer

~ [DF_CRF_based_named_entity recognizer
@ config.conf
= defaultModeljar

~ # DF_Dictionary lookup
config.conf
= defaultDict.txt

~ [DF_Regular_expression_NER
4@ config.conf
= defaultRegExpr.txt

= POS_tagger

@ DF_CRF_based_named_e.. 22 Named entity recogizer ~ Name entity recognition using CRF

(= Ruta_rule_engine hd

P Pipeline &2 =8
~ [5 MyPipeline
“P clamp-ner
~ P Clinical_concept_recognition
~ [Components

B2 Clinical_concept _recognition.pipeline

Figure 10.5 A wrong pipeline for clinical concept recognition needs to be fixed with dependent
NLP models

Clamp Documentation Page 44

03 Component &

¥ 7 B | 5= *Clinical_concept_recognition.pipeling

~ 18 ML_components A - §
& NER_feature_extractor Move up | Move down | Delete |Auto fix| Edit
¥ mzLi_mm-ponelnts i Name Component Description
= Tt
; C;SE klon,c assinier ® DF_Clamp_sentence_det.. 2 Sentence detector Rule based sentence detector
= Chunker
. R @ DF_Clamp_tokenizer % Tokenizer Rule based tokenizer
= descriptor o o
. . . © DF_Dictionary_based_sec.. 2 Section identifier Dictionary based section header Identifier
~ = Named_entity_recogizer
+ |08 DF_CRF_based_named_entity_recognizer e DF_OpenNLP_POS_tagger # POS tagger OpenNLP based pos tagger
: config.conf © DF_CRF_based_named_e.. 2# Named entity recogizer =~ Name entity recognition using CRF

= defaultModel,jar
~ [# DF_Dictionary_lookup
config.conf
£ defaultDict.txt
~ (# DF_Regular_expression_NER
config.conf
E defaultRegExpr.txt
(= POS_tagger
= Ruta_rule_engine hd)
P Pipeline 2 =0

~ [t5 MyPipeline
P clamp-ner
~ ‘@ Clinical_concept_recognition
~ [= Components
&= Clinical_concept_recognition.pipeline

Figure 10.6 - A correct pipeline for clinical concept recognition with all necessary NLP models.

Clamp Documentation Page 45

10.4 Import input files

Once the pipeline is configured, you will need to import your desired files to the Input folder

using the the following steps:

1. In the PipelineView, right click on the Input folder under the Data folder, then select the

import (Figure 10.7). A pop-up menu appears which lets you select the files that you want

to import.

2. Click on the small arrow next to the General folder to expand it, then select File System

as the import source.

3. Click on the Next button (Figure 10.8)

P Pipeline &

~ [5 MyPipeline

Figure 10.7 Drop-downContext menu for importing the input files

‘. clamp-ner

~ P Clinical_concept_recognition

= Components

1- right click on the Input
folder under the Data folder,

v (= Data / then select the import
= Innurt
e | [B Copy Ctrl+C
B Pipelinel |~ Paste Ctrl+V
Delete Delete
Move...
Rename... F2
ix Import...
g Export..
&1 Refresh F5
Properties Alt+Enter

Clamp Documentation

Page 46

Y Import (| X

Select N
=]
Import resources from the local file system into an existing
project.
Select an import source:
type filter text

~ = General
I Archive File
(£ Existing Projects into Workspace

L. File System \
=1 Preferences 2- Click on the small arrow next

to the General folder to expand
it, then select File System

2

< Back MNext = Finish Cancel

Figure 10.8 Import resources from the local file system into an existing project

4. Next, as shown in Figure 10.9, click on the Browse button on the top of the window to
choose the folder of your choice. The selected folder will be displayed on the left side of
the window, and the files inside the folder will be displayed on the right side.

5. Click the checkbox for the files that you want to run the pipeline on; currently the CLAMP
pipeline can only process files with the .txt extension. Also, CLAMP assists you in

selecting your desired files in three different ways: Filter Types, Select All and Deselect All.

Filter Types: Allows you to define the type of files that will be imported. For example, you

may only want to import files with the .txt extension
Select All: Allows you to choose all displayed files

Deselect All: Allow you to deselect the files that have already been selected

Clamp Documentation Page 47

6. Click on the Browse button next to the “Into folder” field to choose the folder that you
want to import your files to. Here, we keep the default directory

7. Click on the Finish button.

800 Import
File system . ——\
import resources from e el el 4~ Ch0OSE the folder of your choice l/—7
-
From directory: .,stersfyzhangJ.Sp’Duwmoads,'mtsamplesjEmergencv_Room_Repon:s [+ | Browse...
Ej (-~ Emergency_Room_Reports [?I |= sample_102.txt
@I |= sample_1057.txt
EI |= sample_1211.txt
5- Click the checkbox for the files o 5 sample_1212.00
. . \} [QI |=| sample_1252.txt
that you want to run the pipeline on & [sample_1256.xt
@I |= sample_1257.txt
EI |= sample_1258.txt
@I |=| sample_1259.txt
™ [Z samole 1260.txt
| Filter Types... | | Select All | | Deselectall |
Into folder: | Clinical_concept_recognition/ Data/ Input | Browse.. |

Options

C overarie exiet _ _ 6- choose the folder that you
| verwrite existing resources without warning . .
|_| Create top-level folder Want to Import VOUr fIIeS to

| Advanced >> |

7- Click on the Finish button

v

< Back | Next > | Cancel | { Finish J

Figure 10.9 Window of input files selection

Now, you can double click on the Input folder to see the imported files (Figure 10.10).

Similarly, you can also double click on each file to view its content (Figure 10.11).

P PFipeline 53 ¥ =0

v |_?:, MyPipeline
F“P clamp-ner
¥ <P Clinical_Concept_Recognition
b (= Components
¥ (= Data
¥ = Input
|=| sample_1054 txt
|=| sample_1068 .txt
|=| sample_1073.txt

Figure 10.10 Imported files under the Input folder

Clamp Documentation Page 48

L8 component 52

Corpus
[3 'EQ ML_cemponents
v m NLP_cemponents
» (= Assertion_classifier
» (= Chunker
¥ (= descriptor
¥ (= Named_entity_recogizer
» [DF_CRF_based_named_entity_recognizer
» [DF_Dictionary_lookup
» [DF_Regular_expression NER
b (=5 POS_tagger
(= Ruta_rule_engine
I (= Section_identifier
I (= Sentence_detector
b (= Tokenizer
P (= UMLS_encoder
I (= User_Defined_Components

P Pipeline &%

v r[\:, MyPipeline
#“P clamp-ner
¥P Clinical_Concept_Recognition
P (= Components
¥ [Data
¥ (= Input
|= sample_1054.txt

=

“Clinical_Concept_Recognition.pipeline D sample_1054.txt 23 = g

Sample Type / Medical Specialty: Discharge Summary

Somple Nome: Dischorge Summary - 6

Description: A white male veteran with multiple comorbidities, who has a history of bladder cancer diagnosed approximately two years
(Medical Transcription Sample Report)

ADMISSION DATE: MM/DDAYYYY

DISCHARGE DATE: MM/DD/YYYY

HISTORY OF PRESENT ILLNESS: Mr. ABC is a 6@8-year-old white male veteran with multiple comorbidities, who has a history of bladder can
HOSPITAL COURSE: Mr. ABC presented to the Day Hospital in anticipation for Urology surgery. On evaluation, EKG, echocardiogram was a
DISCHARGE EXAM:

VITAL SIGNS: Temperature 97.4, heart rate 68, respirations 18, blood pressure 133/78.

HEART: Regulor rote and rhythm.

LUNGS: Clear to auscultation.

ABDOMEN: Obese, soft, nontender. Lower abdomen tender when touched due to bladder cancer.

RIGHT GROIN: Dry and intact, no bruit, no ecchymosis, no hematoma. Distal pulses are intact.

DISCHARGE LABS: CBC: White count 5.4, hemoglobin 18.3, hematocrit 3@, platelet count 132, hemoglobin Alc 9.1. BMP: Sodium 142, pot
PROCEDURES :

1. On MM/DD/YYYY, cardiac MRI gdenosine stress

2. On MM/DD/YYYY, left heart cotheterization, coronary angiogram, left ventriculogrom, coronary gngioplosty with four Multi-Link Wisi
DISCHARGE INSTRUCTIONS: Mr. ABC is discharged home. He should follow a low-fat, low-salt, low-cholesterol, and heart healthy digbeti
DISCHARGE DIAGNOSES:

1. Coronary artery disease status post percutaneous coronary artery intervention to the right coronary artery and to the LAD.

Bladder cancer.

Diabetes.

Dyslipidemia.

Hypertension.

Carotid artery stenosis, status post right carotid endarterectomy in 2004,

Multiple resections of the bladder tumor

Distant history of appendectomy.

Distent history of ankle surgery.

e R L T

Figure 10.11 View the content of input file sample_1054.txt directly in the interface

Clamp Documentation

Page 49

11.Run the pipeline

After you have configured the pipeline and imported the input files, you can start running the
pipeline. To run a pipeline, simply click on the run icon at the top of the screen as shown in

Figure 11.1.

Once the pipeline starts running, you can check the progress of the input file processing
from the Console window and the progress bar at the bottom of the screen (Figure 11.2).
You can always stop the processing at anytime by clicking on the red stop button next to the

progress bar.

O Clamp Toolkit
File View Help

= New Project) = @ Run gt - & Tutorial A a

Figure 11.1 Running the pipeline

HILL LLEWD LUMUEU, LUWILELIUTDTY)

Ll dict items loaded, count=[3100084]
¥ & Components load dictionary finished. ts=[20622], wordCount=[308175], itemCount=[3392504]
V(= Data INFO: filenome=[/Users/mjiang/Documents/CLAMP_ECLIPSE/distribution/CLAMP_MAC_1.1.7/workspace/MyPipeline/Clinical_Concept_Recognition/Data/Input/somple_1841. txt
¥ (= Input
sample_1041.xt INFO: Filenames[/Users/njiang/Documents/CLAMP_ECLIPSE /distribution/CLAMP_MAC_1.1.7/workspace/MyPipeline/Clinical _Concept_Recognition/Data/Tnput/sample_ 1842, kxt

= sample_1042.4xt

= samplo_1054xt INFO: filename-[/Users/mjiang/Documents/CLAMP_ECLIPSE/distribution/CLAMP_MAC_1.1.7/workspace/MyPipeline/Clinical_Concept_Recognition/Data/Input/somple 1054, txt

sample ‘g:g'm INFO: filename«[/Users/njiang/Documents/CLAMP_ECLIPSE /distribution/CLAMP_MAC_1.1.7/Workspace/MyPipeline/Clinical _Concept_Recognition/Data/Input/somple 1068, xt
- sample_1069.t1t
= sample_1071.6t INFO: filenome=[/Users/mjiong/Documents/CLAMP_ECLIPSE/distribution/CLAMP_MAC_1.1.7/workspace/MyPipeline/Clinical _Concept_Recognition/Data/Input/somple_1069. txt
sample_1072.txt
| sample_1073.txt INFO: filename=[/Users/mjiang/Documents/CLAMP_ECLIPSE/distribution/CLAMP_MAC_1.1.7/workspace/MyPipeline/Clinical_Concept_Recognition/Data/Input/semple_1071. txt
¥ (= Output

» B Pipalinelibrary INFO: filenome=[/Users/mjiang/Documents/CLAMP_ECLIPSE/distribution/CLAMP_MAC_1.1.7/workspace/MyPipeline/Clinical .Concept_Recognition/Data/Input/semple 1872, txt

INFO: filename=[/Users/mjiang/Documents/CLAMP_ECLIPSE/distribution/CLAMP_MAC_1.1.7/workspace/MyPipeline/Clinical_Concept_Recognition/Data/Input/sample_1873. txt

Console =g Progress &4 ® ¥ =0
_UCIInIcaI concept_recognition O

Figure 11.2 check the progress of the input file processing from the Console window

Clamp Documentation Page 50

12.Output visualization

Once running the pipeline is completed, the generated files are displayed in the Output

folder. These files can be viewed in two different formats (.xmi, .txt):

Clicking on a file with the .xmi extension allows you to view its original content
annotated with recognized clinical concepts. Different types of clinical concepts will be
highlighted with different colors. (Figure 12.1)

<> New Project ORun vy v & (YTutorial A @
(42 Component 82 € Corpus bl - | C) . bipe Q) sample_1041.xmi &
» TAML_components
vY0NLP_components Sample Type / Medical Specialty: Discharge Summary
¥ (= Assertion_classifier 2/ Sample Name: Discharge Summary - 4
» (& Chunker
» (= descriptor L} e
¥ (> Named_entity_recogizer Description: Patient admitted after an extensive workup for peritoneal carcinomatosis from appendiceal primary.
» (3 DF_CRF_based_named_entity_recognizer (Medical Transcription Sample Report)
» (% DF_Dictionary_lookup DATE OF ADMISSION: MM/DD/YYYY.
» (#DF_Regular_exprossion NER 6 DATE OF DISCHARGE: MM/DD/YYYY.
» (= POS_tagger
» (> Ruta_rule_engine ornier]
¥ (= Section_identifier ADMITTING DIAGNOSIS: Peritoneal carcinomatosis from appendiceal primary.
» (= Sentence_detector]

» (= Tokenizer
» (3 UMLS_encoder
¥ (> User_Defined_Components [DESHIEm
SECONDARY DIAGNOSIS: Diarrhea.
ATTENDING PHYSICIAN: ABCD, M.D.
SERVICE: General surgery C, Surgery Oncology.
2 CONSULTING SERVICES: Urology.

DISCHARGE DIAGNOSIS: Peri[onea[carcinomatosis from appendiceal primary.

P! Pipeline 53 i PROCEDURES DURING THIS HOSPITALIZATION: On MM/DD/YYYY,
VoSl Fipoke] =
» %P clamp-ner ——— N = - -
vep G 1. @ il retrograde insertion of bilateral externalized ureteral stents.
inical_Concept_Recognition
» (= Components [ereatment treatment] [zreatment it {reatment] reatment) (treatment)
V¥ (&0ata 15/2. E y lap y, right i cholecy: omentectomy, IPHC with mitomycin-C.
» (= Input
¥ (= Output -
sample_1041.txt HOSPITAL COURSE: The patient is a pleasant 56-year-old gentleman with no significant past medical history who after an extensive workup for

Figure 12.1 View of text annotated with recognized clinical concepts

Clicking on a file with the .txt extension will display a view of tab delimited, detailed output
information in a new window. As shown in Figure 12.2, each line in the file illustrates the
detailed information of one recognized clinical concept. The following information

is included in atab delimited output:

1. StartIndex: Starting position of the recognized concept.

2. End Index: Ending position of the recognized concept.

3. Semantic Type: Semantic type of the recognized concept.

4. CUI: The Concept Unique Identifier of the concept in Unified Medical Language System
(UMLS). If the pipeline does not include the model of UMLS encoder, the value of this

column will be “null”.

Clamp Documentation Page 51

5. Assertion: If the pipeline does not include the model of Assertion identifier, the value of

this column will be “nul

6. Concept Mention: Referring to a concept, i.e., named entity in the text.

08 Component 82 € Corpus
hmML components
v 'I;D MLP_cemponents
» (= Assertion_classifier
» = Chunker
» (= descriptor
¥ (=~MNamed_entity_recogizer
» 2 DF_CRF_based_named_entity_recognizer
» 8 DF_Dicticnary_lookup
b 2 DF_Regular_expression_NER
b = POS_tagger
» (=~ Ruta_rule_engine
(== Section_identifier
» (= Sentence_detector
P = Tokenizer
» = UMLS_encoder
» (=sUser_Defined_Components

P Pipeline 332
v |_—|\: MyPipeline
k<P clamp-ner
¥<P Clinical_Concept_Recognition
b (=~ Components
¥ (= Data
F = Input
¥ = Output
=/ sample_1041.txt
\Qsample 1041.xmi

2] sample_1042.txt
i camnia 142 ¥mi

- =
g8 Clinical_Goncept Recognition.pipeline

124 143 test null null
]148 173 problem null null

sample_1041.xmi [El sampi

an extensive workup % 6' Concept Ment'on

peritoneal carcinomatosis

23 348 problem null null Peritoneal carcinomatosis
98 423 problem null null Wcarcinumatosis
1- Start Index |72 430 :

problem null null Dian

54 664 test null null Cwvst . H
666, 699 null! null bilg 5 Assertlon

test ograms
718 treatment null ASertIon
14 2E2 treatment null bilateral externalized ureteral stents

treatment

2_ End Index treatment n Pight hemicolectomy
treatment n 4' CUI cholecystectomy

820 831 treatment nuTT TIOTT plenectomy

833 844 treatment null null omentectomy

846 850 treatment N null IPHC

ull xploratory laoparotomy

bilateral ureteral stent placement

54ac = — mitomycin-C
98 . an extensive workup
18 3_ Semantlc Type mull peritoneal carcinomatosis
115= TITC TEST T wll a routine preoperative evaluation
1183 1196 test null null baseline labs
1198 1208 treatment null null bowel prep
1230 1254 treatment null null ureteral stent placement
1358 1362 test null null a cystoscopy
=0 1368 1482 treatment null null
1423 1448 treatment null null an exploratory laparotomy
1458 1469 treatment null null right hemicolectomy
1471 1486 treatment null null cholecystectomy
1488 1499 treatment null null splenectomy
1581 1512 treatment null null omentectomy
1518 1522 treatment null null IPHC
1528 15349 treatment null null mitomycin-C
1568 1581 problem null null complications
1668 1682 problem null null persistent tachycardia
1689 1699 treatment null null extubation
1963 1971 problem null null His pain
2040 2059 treatment null null a PCA pump

Figure 12.2 Tab delimited format of output files

Clamp Documentation

Page 52

13.Built-in pipelines

In order to facilitate a convenient utility of CLAMP, a series of pipelines that could be directly
adopted in common clinical applications are pre_built and displayed in PipelineLibrary
(Figure 13.1). Users can directly drag one of them (e.g., smoking_status, Figure 13.2) from
the PipelineLibrary and drop it under My Pipeline. The required NLP components of these
pipelines are already configured, as illustrated in Figure 13.3. CLAMP allows you to

customize each of these components to fit your needs. Now, you need to import your files;

for more information go to “Import input files” section.

P Pipeline 3
4 5 MyPipeline

- “P clamp-ner

- “P Clinical_Concept_Recognition

- B Mypippy
4 | PipelineLibrary

a L[behavior

= smoking_status

4 5 disease_symptom
bleeding_extraction
colarectal_cancer
4 L general
clamp-ner
clamp-ner-attribute
disease-attribute
lab-attribute
medication-attribute

000 00D DOR DOD 000 5 00D DO

Figure 13.1 Built-in pipeline library in CLAMP

Clamp Documentation Page 53

P Pipeline 23 e (|
v [MyPipeline
b “P clamp-ner-attribute

e
¥ (= Components
EE smoking_status.pipeline

b (== Assertion classifier

P (= Named entity recogizer

P (= POS tagger

P (= Ruta rule engine

P (= Sentence detector

b (= Tokenizer

¥ (= Data
= Input
(= Output

V 5 PipelineLibrary
v D:. behavior
b = smoking_status
v [disease_symptom
= bleeding_extraction
colorectal_cancer
eneral
clamp-ner
clamp-ner-attribute
= disease-attrioute
lab-attribute
medication-attribute

000 ooe

v [f\:l

©

000 £O0 006 boe poo

Figure 13.2 Dragging smoking_status and drop it under MyPipeline

Move up Move down Delete Auto fix Edit
Name Component Description
@ DF_Clamp_sentence_detector [Sentence detector Rule based sentence detector
@ DF_Clamp_tokenizer [Tokenizer Rule based tokenizer
@ DF_OpenMLP_POS_tagger B POS tagger OpenMLP based pos tagger
@ new_Dictionary_lookup [Mamed entity recogizer dictionary lookup algorithm
@ DF_MegEx_assertion [Assertion classifier Assertion info detection using NegEx
@ DF_Ruta_script_file [Ruta rule engine Ruta script

Figure 13.3 Built-in pipeline library in CLAMP

Clamp Documentation Page 54

Depending on what your use case is, the current built-in pipelines are divided into the

following categories:
1. General: automatically annotates concepts and their attribute for general use, including:
CLAMP-ner: annotates the disease, procedure and medication concepts

CLAMP-ner-attribute: annotates the attributes of disease (e.g., body location of a
disease), lab procedure (e.g., value of a lab test) and medication (e.g., dosage of a

medication) concepts

Disease-attribute: annotate the attributes of diseases, including body locations (e.g., left

atrium), severity degrees (e.g., mild, severe) and uncertainty (e.g., probably).
Lab-attribute: annotates the attributes of lab procedures
Medication-attribute: annotates the attributes of medications

2. Disease_symptom: automatically annotates symptoms of diseases, including:
Bleeding_extraction: annotates bleeding symptoms
Colorectal_cancer: annotates symptoms of colorectal cancer

3. Behavior: automatically annotates behaviors of patients, including:

Smoking_status: annotates whether or not the patient is in a smoking status, and whether

the patient has a smoking history.

Figure 13.4 illustrates an example of using the disease-attribute pipeline in our pipeline

library to annotate attributes and their relations with diseases.

Clamp Documentation Page 55

Conclusions:

[BODYLOC] [BODYLOC]
Limited study. No color doppler was performed. The left atrium is normal in size. Left ventricular wall thicknesses are normal. The
sevof
vloc()fﬁ
C ™~ LocOf:

1BODYLOC
[BODYLOC) Embl.em,’

left ventricular cavity size is normal. There is severe regional left ventricular systolic dysfunction with

+——LocOf ./ locOf
W‘°‘WWMJ (BODYLOC] [BODYLOC
mid and distal LV akinesis amd re;atove sparing of the base of the LV. Overall left ventricular systolic function is

sevij
“—\ecOf—{problem

[B0DYLOC) (BoDYLOCT)
severely depressed. Right ventricular chamber size and free wall motion are normal. Right ventricular chamber size is normal.
(BODYLOC CONDNGTON 2~ ©@E [BopYLOC]
Right ventricular systolic function is hard to assess but is probably normal. The aortic valve is not well seen. The
[BODYLOC SUIGHT) [BODYLOC]

mitral valve leaflets are ;nlldl)') thickened. There is no pericardial effusion.

Figure 13.4 An example of disease attribute annotation using the pipeline library in CLAMP

Clamp Documentation Page 56

14.Export pipeline as a jar file

In order to export a pipeline as a jar file and use it in the command line version, please follow

the steps below (Figure 14.1):

1. Go to your desired pipeline folder
2. Click on the small arrow next to it to expand it

3. Right click on the Components folder and select “Export as jar”

P Pipeline
~ [MyPipeline
/ ~ ¢ clamp-ner 4+—— 1. Go to your desired pipeline folder

v (= Components

K 5= clai save as component
2. Click on the small arrow pes 4 Export asjar
to expand the folder = A5 \
~ = Nal [§ Copy Ctrl+C
v Paste Cirl+V 3. Right click on the Components
{ ¥ Delete Delete folder and select “Export as jar”
Mave...
Rename... F2

= PO! g Import...
= Sec &y Bxport..

= 5er &7 Refresh F5
STk popert Alt+Ent
roperies +cnter
= UM P
= Data

Figure 14.1 Export a pipeline as a jar

Clamp Documentation Page 57

15. Annotation

15.1 Annotate corpus

The CLAMP annotation module enables you to annotate customized entities and specify
relations between them in your desired corpus . These annotations enable you to assign
additional clinical information to a selected text and develop an annotated corpus that's
more suitable to the specific task that you have. Task-specific models can be developed and

used in the machine-learning modules of CLAMP or any other system of your choice.
Before using this function, you need to:

1. Create a project

2. Import the files that you want to annotate

After completing these steps, you will be able to annotate the imported files based on some
predefined structure. The following steps will guide you on how to perform the steps

mentioned above.
15.1.1 Create a project

A) To create a project:

1. Click on the plus (+) sign at the top left corner of the screen as shown in Figure15.1.

o New Project g -

B~

A) 1- Click on the plus sign Index

(@ Component & €

18 ML_components
18 NLP_components

Figure 15.1 Step 1 to create a new project

2. Onthe pop-up window, enter a name for your project, e.g., Drug_name_annotation, (Figure
15.2).

3. Select Corpus Annotation as the project type.

4. Click the Finish button.

Clamp Documentation Page 58

\5 Create a new project O s

Select Project Type

Creating a new project wizard: select project type

Project name:
Drug_name_annotation <«—— A) 2- enter a name for your project Index
Choose NLP T
= Corpus
[Z] Corpus Annotation <———
~ = Applications
[NLP Pipeline

A) 3- Select Corpus Annotation
as the project type

A) 4- Click the Finish button

v

| Finish | Cancel

Figure 15.2 Creating a new Corpus Annotation project

A new project with the name that you have specified is created and placed in the Corpus

panel. (Figure 15.3)

C Corpus

€ demoCorpus
~ € Drug_name_annotation
= corpus
= models
H| typedefxmil

Figure 15.3 Creating a new Corpus Annotation project
Double click the project name to view its content. The created project contains two main
folders:
Corpus: Contains the files that will be annotated

Models: Contains the machine learning models generated from the annotated files.In
addition, the prediction results generated from the n-fold cross-validation process and gold

standard annotations are included in this folder.

Clamp Documentation Page 59

15.1.2 Import annotation files

After you have created a project, follow the steps defined below to import the files that you

want to annotate:
(Please note that you can import the files to either train or test folders.)
A) To import the files that you want to annotate:

1. Right click on the train folder under the corpus folder in the CorpusView panel

2. Select the import function from the context menu (Figure 15.4). A pop-up window will

appear.
C Corpus &
€ demoCorpus
+ [€ Drug_name_annotation A) 1- Right click on the train folder under
v (= corpus the corpus folder in the CorpusView panel
= test /
= train
& model E Copy Ctrl+C
¥ typedt Paste Ctrl+V
H Delete Delete
A) 2- Select the import function Move..
from the context menu \ Rename.. F2
f= Import..
1 Export..
&1 Refresh F5
Properties Alt+Enter

Figure 15.4 Context menu for importing the input files

3. On the pop-up window, select the import source. Here, you need to select “File System”
which is already selected by default.

4. Click on the Next button

Clamp Documentation Page 60

Y Import O X

Select
=
Import resources from the local file system into an existing
project.
Select an import source:
type filter text

v [= General
JE Archive File
= Existing Projects into Workspace

[File System
[C1 Preferences \

A) 3- Select the import sourse

A) 4- Click on the next button

5. Click on the Browse button on the top of the window to choose the folder of your choice.
The selected folder will be displayed on the left side of the window, and the content of the
folder will be displayed on the right side. To import you desired files, check the

checkboxes next to the files of your choice.
You also have three options to choose from: Filter Types/ Select All/ Deselect All

Filter Types: Allows you to define the type of files that will be imported. The only extensions
that you will work with in CLAMP are txt, and .xmi. For example, you may only want to import

files with the .txt extension
Select All: Allows you to choose all displayed files
Deselect All: Allow you to deselect the files that have already been selected

6. Click on the Browse button next to the “Into folder” field to choose the folder that you
want to import your files to. Here, we keep the default directory

7. Click on the Finish button.

Clamp Documentation Page 61

\5 Import O =
File system A) 5- Chosse the —

Import resources from the local file system. folder of vour choice \ L‘A

From directory: | C\Users\msalimi\Google Drive\MTSamples V| Browse...

E‘L_u MTSamples [~ E sample_1425.txt
[] E sample_1427 txt
[~] E sample_1428.txt
[«] E sample_2027 txt

Filter Types... Select All Deselect All
Into folder: | Drug_name_annotation/corpus/train | Browse...
Options f
[[] Overwrite existing resources without warning
[Create top-level folder A) 6- choose the
folder that you want
to import your files to

A) 7- Click the Finish button

\

< Back Next = Finish Cancel

Now that the selected files have been imported to your desired folder, you can start
annotating them. Double click on the files to open theim in the middle window and annotate
them. Upon double clicking each file, you will notice that another file with the same name but
a different extension (.xmi) has been added to your folder and displayed on the screen. This

is the file type used by CLAMP for display and interaction purposes (Figure 15.5).

€ Corpus & = 0 B @y sample_1425xmi

€ demoCorpus

. Sample Type [Medical Specialty: .
~ € Drug_name_annotation

Sample Name: Evaluation of Allerg

w [= corpus Description: Chronic glossitis, xert
&= test Upon double clicking each file, you asthma.
v B train / will notice that another file with the {Medical Transcription Sample Rep
- sample_1425.txt same name but a different extension HISTORY: A 55-year-old femE:e pt
- - ' f taste, xerostomia, gastroesophage
o sample_1425.xmi ('Xml) has been added to your folder inhalant allergies. Please refer to ¢
2 sample_1427.txt IMPRESSION:
5 sample_1428.txt 1. Chronic glossitis/xerostomia/pn

2. History of fibromyalgia.

=| sample_2027 txt . . .
o ple_ 3. History of peptic ulcer disease,

Figure 15.5 The content of an annotation file

Clamp Documentation Page 62

15.1.3 Define entity & relation types

Before starting annotation, you need to define the semantic types that you will use for this

purpose. Semantic types in CLAMP refer to entities(e.g, ‘problem/treatment/test’) and the

relations between them.

A) To define a new entity type:

1. Double click on the typedef.xmi file under the models folder to open it. Using this file, you

will be able to define a schema for entities and the relation types among them:

2. Right click on the Entities node

3. Goto “Add Child”

4. Click on New Element

[T

[l 5 M :

Node
~ [e] xml
[e
[
Comment
Add Processing Instruction
#PCDATA;
CDATA Section

A) 2- Right click on the enteties node

idimm

Add DTD Information...
Edit Namespaces...

Add Attribute

—

Add Child
Add Before
Add After
Replace With

>

A) 3- Go to Add Child
]

New Element... -

A) 4- Click on new elements

5. Inthe pop up window, enter a name for the element

6. Click the OK button

Node
v [e] xml
v [e] Entities
[e] drug
[€] Relations

Content

\§ New Element

Element name: | dosage|

<«—H A) 5- Enter a name for the element

A) 6- Click the OK

button |—»

Cancel

Clamp Documentation

Page 63

The created element will be added to the Entity node (Figure 15.6)

MNode
~ [€] xml
~ [g] Entities
[drug
[e] dosage
[e] Relations

Figure 15.6 The created element will be added to the Entity node

The above steps should be repeated for every element that you want to add to the Entity

node.
B) To define a new relation type:

1. Right click on the Relations node
2. Goto “"Add Child"

3. Click on New Element

Node Content
~ [xml
v [e] Entities
[e] drug . . .
B) 1- Right click on the Relations node
[e] dosage /
[e] Relations
Remave

Add DTD Information...
Edit Namespaces...

Add Attribute >
!~ Comment Add Child >
7 Add Processing Instruction Add Befare T >
o #pCOATA addAfer | B)2- Go to Add Child
[fl CDATA Section Replace With >
[e] MNew Element...

B) 3- Click on new elements

4. Inthe pop up window, enter a name for the relation
Click the OK button

Clamp Documentation Page 64

%] *typedefxml =3

Node Content
~ [g] xml
v [g] Entities
[e] drug
[e] dosage
[e] Relations

Y New Element X

Element name: | dosage_of| <« B) 4- Enter a name for the element

B) 5- Click the OK button —.[oK | Cancel
I

Then, you need to decide which entities are involved in this relation. There are two roles of

arguments an entity can hold in a relation: From, and To.
“From” refers to an independent entity while “To” indicates the dependent entity.
C) To select the entities that are involved in a relation:

1. Right click on the newly created relation
2. Go to “’Add Attribute”
3. Click on “New Attribute”

Mode
~ [&] xml
~ [g] Entities
[e] drug X X X
& dosage C) 1- Right click on the newly created relation
~ [e] Relatio
& dos: Remove
Add DTD Information...
Edit Namespaces...
MNew Attribute... | Add Attribute T >
T Add Child = :
C) 3- Click on new Attribute Add Before | ©)2 Go'to Add Attribute
Add After »
Replace With b

Clamp Documentation Page 65

4. In the pop up window, enter a name for the new attribute (you will use “from” for the
independent entity, and “to” for the dependent entity)

5. Enter the actual name of the entities for the Value field

6. Click the OK button

7. Click on Save at the top of the window

Mode Content
~ (& xml
v [e] Entities
[e] drug
[e] dosage
~ [g] Relations
[e] dosage_of

) New Attribute X

<«— A) 4- Enter a name for the new attribute
I

Value: | dosage] <1 A) 5-Enter the actual name of the entities

Name: | from

A) 6- Click the OK button

v

| 0K | Cancel

Clamp Documentation Page 66

15.1.4 Start Annotation

Now that you have set your desired schema, you are ready to start annotating your corpus.

First, open your desired .xmi file, then:

To assign entity: Place your mouse over a word/phrase to highlight it and assign an

appropriate entity to the selected text. (Figure 15.6)

DISCHARGE MEDICATIONS:
1. Multivitamins daily.

[drug] [dosage
2. Lovenox 40 mg in 0.4 mL solution inject subcutaneously once daily for 14 days.

3. Vicodi~ =¢=nn ~~ and take one tablet by mouth every four hours as needed for
pain dosage

4, Phenm tablets, take one tablet by mouth every six hours p.r.n. for
nausea.

Figure 15.6 Named entity annotation

To assign relation: By dragging your mouse from an independent entity and dropping it to a
dependent entity, the names of possible relations will occur. Choose the appropriate relation
name by clicking on one of the displayed names. (Figure 15.7)

DISCHARGE MEDICATIONS:
1. Multivitamins daily.

-‘dmg*.d-dosage_cf-\i_,—_g_’dm &
2. Lovenox 40 mg in 0.4 mL solution inject subcutaneously once daily for 14
days.
(e

3. Vicoo __

dosage_of
ge_ . take one tablet by mouth every four hours as needed for

pain.
4. Phenergan 12.5 mg tablets, take one tablet by mouth every six hours p.r.n. for
nausea.

Figure 15.7 Relation annotation
Please remember that you can only assign a relation to the entities that have already been
defined in that relation.

Once you have completed annotating the corpus, save your changes by clicking on the save

button at the top of the screen.

Clamp Documentation Page 67

15.1.5 Visualization of entity & relation

Although different colors are automatically assigned to the different items in the “Display
Option”, (Figure 15.8), you are able to change them at any time.

A6 Display options = O

Semantic

~ [] Entity
dosage
drug .
Relation
|:| Syntax

Figure 15.8 Change visualization of the annotated entity/relation

A) To change the default colors for semantic types:

1. Double click on the default color for the entity of your choice
2. Pick a new color from the color picker window
3. Press the OK button

3 Display options 2 = B8
Semantic A) 1- Double click the on the
~ T'W / default color of your choice
~ || dosage
EColorDialog Demao *
E Basic colors:
N T N
NI NN
2l -
elq
e T
HNEEEENERN
HEEEN B
A) 2- Pick a new color e
[rrrr
- rrrrrr
A) 3- Press the OK button P

Clamp Documentation Page 68

15.1.6 Pre-Annotation of entity and relation

As annotating a corpus from scratch may be a time-consuming and costly process, CLAMP

offers an advanced feature called “pre-annotation” function which facilitates this

process. The “pre-annotation” function relies on the existing models in CLAMP and is highly

customizable.

A) Using pre-annotation function

1. Choose your desired pipeline to annotate your files in a corpus project.

For more information on how to run a pipeline, go to “Run the pipeline” section.

2. Select the .xmi files which contains the predicted named entities from the output folder.

3. Copy them into the train/test folder of your desired corpus annotation project. To copy,

right click on the selected files and choose copy.

¥ € Problem_annotation
¥ (> corpus
(> test

A) 1- Choose your
desired created pipeline

| E Relations 5
(= models
(X} typedef.xmi A) 3- Copy them into the

train/test folder of your desired
corpus annotation project

ya]

P PipelineView &3

¥ 4P Clinical_concept_recognition
» (= Components
¥ (> Data
(= Feature

Progress Information

P input
¥ (= Output
Bl sample_102.txt

B sample_1057.txt

sample_1057.xmi

I

A) 2- Select the .xmi files which
contains the predicted named entities
from the output folder pipbeline

Double click on the files to view their contents in a new window. As you can see in Figure

15.9, the identified named entities in the file are already highlighted. Now you can start your

own annotation.

Clamp Documentation

Page 69

typedef.xm O sample_102.xmi % -

[

Sample Type / Medical Specialty: Emergency Room Reports
2 Sample Name: Consult - ICU Management

i Description: Consultation for ICU management for a patient with possible ﬁb?tal \Tein and

[probiem|
superior mesenteric vein thrombus leading to mesenteric ischemia.
4 (Medical Transcription Sample Report)
5 REASON FOR CONSULTATION: ICU management.
> HISTORY OF PRESENT ILLNESS: The patient is a 43-year-old gentleman who presented from

[protem
an outside hospital with complaints of right upper quadrant pain in the abdomen, which
~ proviem
revealed possible portal vein and

s]peﬂor mesenteric vein thrombus leading to mesenteric ischemia. The patient was
transferred to the ABCD Hospital where he had a weeklong course with progressive
improvement in his status after aggressive care including intubation, fluid resuscitation, and
watchful waiting. The patient clinically improved; however, his white count remained

Figure 15.9 A file with pre-annotated named entities

Clamp Documentation Page 70

16.Machine learning model development

Clamp enables you to build your own machine learning model based on a corpus that you
have already annotated or a pre annotated one that you have imported into a corpus
annotation project. The model can be used for predictions on new files. In the current version
of Clamp, CRF (Conditional Random Field) is used to build machine-learning model for

named entity recognition (NER).

The first step to build a Machine Learning model is to configure its schema. After configuring
the schema, you will be able to start running the training model and evaluation processes.
Once these processes are completed, you can view the generated model, its associated log
files, and named entities predicted by the model in the output folder. The following steps

will guide you on how to perform the steps mentioned above.

16.1 Building machine learning models (NER model)

1. Select your desired train folder on the Corpus panel

2. Click on the “Train Model” button at the top of the window as shown in Figure 16.1

CLAMP Toolkit File Run Buicl;0 Document
O ¥y Train |

g < o = B @ . W

Figure 16.1
3. On the pop up window as shown in Figure 16.2, enter a name for the model that you are
building

4. Click the checkbox for the features that you want to include in your model

Clamp Documentation Page 71

5. In the Evaluation box, choose if you want to test the built model against a test dataset

and/or if you want to do a n-fold cross-validation during the training process.

If you choose to test the model against a test set, make sure that you have your desired
annotated xmi files in the folder of your choice. You can browse for the folder by clicking on
the three dot button next to the checkboxes. With the n-fold cross validation, you are not

required to do so as the training data will be used to test the model performance.
6. Click on the Finish button to start building the model.

Once the building process starts, you can check the progress in the Console window, as well
as the progress bar at the bottom of the screen. You can also stop the building process at

anytime by clicking the red stop button in the Progress window.

) Create a new NER model g X

Configuration of the new model

Creating a new NER model, customize params 3. Enter a name
for the model that

ou are buildin
Model name | nodel_20160922_131857 4 y gl

Training corpus| C:\Users\msalimi\CLAMP\Software_1_1_7\C|ampW|'n_1.1|

MNER feature extractors Descriptions &

DF_Brown_clustring_fe.. Run brown clustering first, ...
DF_Dictionary_lookup_... Run dictionary matching fi...

S Fe DF_Ngram_feature Ngram features of words a...
elect features DF_Prefix-suffix_feature Prefix & suffix of the words
DF_Random_indexing_{... andom indexing first,...

DF Section feature Add sectionieadel 4. Click the checkbox for the features
DF_Sentence_pattern_f.. Add sentence info(| that you want to include in your model

CRFSuite options -a Ibfgs -p c2=0.9
Evaluation

Use test set | C:\Users\msalimi\CLAMP\Software_1_1_7\ClampWin_1.1.7\(..

[]cv.fold= 5
'\ 5. Choose if you want to test the built model with

a test dataset and/or if you want to do a n-fold
cross-validation during the training process

6. Click on the Finish button —
to start building the model e

Figure 16.2 Configuration window for machine learning model building

Clamp Documentation Page 72

Note: During the model building process, the training files can not be annotated. Clicking on

the text of the training files pops up an alert window indicating that the user operation is
waiting for a function to complete, (Figure 16.3).

X typedef.xm! \‘ sample_102.xmi &3 =0

1 Sample Type / Medical Specialty: Emergency Room Reports
2 Sample Name: Consult - ICU Management

3 Description: Consultation for ICU management for a patient with possible poirtal ;ld and

2 [oroblem) —
superior mesenteric vein thrombus leading to mesenteric ischemia.

4 (Medical Transcription Sample Report)

5 REASON FOR CONSULTATION: ICU management.

5 HISTORY OF PRESENT ILLNESS: The patient is a 43-year-old gentieman who presented from

, which

I

‘ Train project Problem_annotation NER Training, Fold 1 (Waiting)

Surgery Service where

Figure 16.3 Annotations on the training file will be paused during the model building process

Clamp Documentation Page 73

16.2 Check output models & logs

By default the built models, their associated logs, and the named entities predicted by each

model (in the output sub-folder) are stored in the models folder. As shown in Figure 16.4,

both the model built during n-fold cross validation and the model trained on the whole

training set are also stored in the directory. The content of the log files includes the output

information of the training process and the evaluation performance of each specific folder

for cross validation. (Figure 16.5)

¥ C Problem_annotation
P (= corpus
¥ = models
¥ = model_problem_recognition
P = output
#model.foldﬂ.jar
Qplmodel.foldl.jar
-ap'model.foldz.jar
a-lmcrdel.fo]dljar
#model.fﬁ]ddﬂjar
-a-'model.jar
|= training.fea
|=| training.fold0.fea
BE training.fold0.log
|Z| training.fold1.fea
B training.foldl.log
|Z| training.fold2.fea
B training.fold2.log
|Z| training.fold3.fea
BB training.fold3.leg
|Z| training.fold4.fea
B training.fold4.log
BB training.log
|%] typedef.xml

Figure 16.4 Annotations on the training file will be paused during the model building process

2@15-10-07
2815-10-87
2@15-10-87
2@15-10-87
2@15-10-e7

14:
14:
14:
14:
14:

53:
53:
53:
53:
53:

23
23
23
23
23

Evaluation result:

correct predict gold P R F1

B2 1e3 159 8.796 8.516 B.626
660 742 77 2.889 8.849 8.869
163 178 196 2.916 8.832 8.872

Figure 16.5 Cross-validation performance in training.fold0.log

semantic
treatment
problem
test

Clamp Documentation

Page 74

16.3 Use your own model in pipeline

The steps below show how you should use your own model to recognize named entities:

1.
2.

Make sure that you have selected your desired project folder on the Corpus panel
Go to models> model_xxx> output, then, right click on the file labled model.jar and select

copy (Figure 16.6)

3. Go to the pipeline panel and select the pipeline of your choice

Click on the small arrow next to it to expand it

5. Go to Components -> Named Entity Recognizer ->

9.

DF_CRF_based_named_entity_recognize

Paste the copied file into “CRF based name entity recognizer” folder by righ clicking on
the folder and choosing past

Double click on the Config.conf file in the “CRF based named entity recognizer” folder to
open it

Click on the three dots button to replace the default model for “CRF based named entity
recognizer” with your own model (Figure 16.7)

Click on the Open button

10. Click the save button at the top of the page to save the changes (Figure 16.8)

03 Component | (€ Corpus 2

€ demoCorpus
~ € Drug_name_annotation

(= corpus
v = models 2. Go to models> model_xxx>

v = model_20160922_131857 output, then, right click on the file
& output labled model.jar and select copy
= model jar 4/
=| training.fea
=| training.log

¥ typedefxml

P Pipeline &2 ¥ =08

~ (5 MyPipeline
+ ‘P clamp-ner

DF_CRF_based_named_entity_recognizer

v (= Components

5.Go to Components > Named Entity Recognizer >

o= clamp-ner.pipeline
= Assertion classifier
~ = Named entity recogizer
~ [DF_CRF_based_named_entity_recognizer
@ config.conf
=| defaultModel.jar

Figure 16.6 How to use your own model to recognize name entities

Clamp Documentation Page 75

& *sample_1425xmi config.conf 2

Component name: Named entity recogizq

8. Click on the three dots button to replace
Processor name: CRFE based named ent| the default model for “CRF based named

T entity recognizer” with your own model \
NER model ﬁle| defaultModel.jar ‘ [
Y Select Pt
4N « Nam.. » DF_CRF_based_nam.. + 0 Search DF_CRF_based_named_.. R
Organize = New folder =- @ @
~ - -
R . Name Date modified Type
fig.conf 7/20/2016 407 PM CONF Fil
@ Creative Cloud Fil¢ D conig-con 1201 e
|| defaultModel 7/20/2016 4:07 PM Executabld
¢ OneDrive |£:| model 9/22/2016 2:42 PM Executabld
= This PC < >
File name: |model V| =E v
9. Click on the Open button —> Cancel

Figure 16.7 Replace the default model with your own model

MNew Project

C Corpus i

| Save All (Ctrl+Shift+S)

Figure 16.8 Click the Save button at the top of the page

Clamp Documentation

Page 76

16.4 Visualization for error analysis

You will be able to evaluate the performance of the NER model only if you have already
checked the checkbox(es) for “Use test set” or/and “CV, fold” when creating the model. For

more information on creating a new NER model, go to Building machine learning models

section. Once the model is built, you can conduct an error analysis to compare the gold-
standard annotations with the predicted ones (the annotations that are built based on the

model that you have specified).
To perform error analysis:

Double click on one of the .xmi files listed in the output folder of your choice on the corpus
panel. This will open a new window where you can see the original text along with both gold-
standard and predicted annotations (Figure 16.9).

. New Project CRun #y v & (Y Tutorial A a
omponent | (6] Gorpus 5 ¥ = B || ¥ sample_1057.xmi 52 =g
» € demoCorpus
» € Drug_name_annotation
¥ |C Problem_annotation
¥ (= corpus lorobiem|
(Eotest Description: A female with unknown gestational age who presents to the ED after a suicide attempt.

v " :;::;; (Medical Transcription Sample Report)
= HISTORY OF PRESENT ILLNESS: Ms. ABC is a 34-year-old gravida 2 para 1-0-0-1 at unknown

Sample Type / Medical Specialty: Emergency Room Reports
Sample Name: Consult/ER Report - OB/GYN

¥ (= model_20180722_114850
¥ = output prodlem.

Q) sampie_102.xmi gestational age who presents to the ED after a suicide attempt. The patient states that she took 28
Q¥ sample_1057.xmi
Y sample_1211.xmi redict [wreatment
O sample_1212.xmi [pregicy broblem]
\\sampb 1252.xmi Ambien and 4 tramadol pills on her way to the hospital in attempt to commit suicide. She states that
\\samule 1256.xmi she and her daughter's father had been in an argument over the state of their relationship. She states
Q) sample_1257.xmi that she first threatened to shoot herself. However, he took the gun away from her. Then, she

\:samule 1258.xmi attempted to cut her wrist with a knife. However, he also got the weapon away from her. She states
Q¥ sample_1258.xmi

¥ sample_1260.xmi iredl:[

> le_1261. . i
:5::2: 1271 ::: that in the car, on the way to the hospital for evaluation, that she took the remainder of her Ambien and

¥ sample_1289.xmi ireal:(

¥ sample_1280.xmi

\‘Sﬂmple 1294 xml tramadol tablets.

\\sample 1328.xmi The patient states that she has abnormal menstrual periods and cannot remember the first day of her
\5Sﬁmple 1341.xmi last normal menstrual period. She states that she had spotting for three months daily until

¥ sample_1371.xmi

Q¥ sample_1372.xmi lorobiem]

\‘sample 1373.xmi approximately two weeks ago, when she believes that she passed a fetus. She states that upon

Q¥ sample_1401.xmi]

Y sample_1402.xmi removal of a tampon, she saw a tadpole like structure and believed It to be a fetus. However, she
sample xmi
(43 le_1505.

¥ sample_1568.xmi predict
Q¥ sample_1624.xmi L)
s‘samme 1652.xmi states she did not know that she was pregnant at this time. She denies any abdominal pain or
~ S

pregict

Figure 16.9 - The .xmi file content which includes the original text along with both gold-standard
and predicted annotations

Please note that all named entities in both gold-standard and predicted annotations are

listed on the "Display Options" panel. You can choose which named entities to be

highlighted in the text file and assign different colors to them as described in “Visualization

of entity and relation types” section.

Clamp Documentation Page 77

